
AD-ft99 963 SOFTAE DEPENORILITY RSSESSMENT ETODSM UTTELLE 1/2
COLUKIIJ DIV ON4 S R PRATER ET AL. NOV 6

LWUMLRSSIIEDDOT/FA/CT-S6/27 NAS2-11B53F/L25 M

1 _ _113.1 2

L2.2

4.0 2.0

III 1 .8
11111.25 14 1.
IIII 111 - -

MICROCOPY RESOLUTION TEST CHAR'

NA' tNA, 9,,REAw OF SIANOAPDS-9$

1

%%• %

IV , - . " -. - . . . ". ,"-,

,,' " ,,. , ,,',, ,{'% " ,",-. - -'.-% " .',,,% .', . .- .- .'.,- -... . . o..- .. -, .. " - . -. ,-. . " .-.. .- .- - ...- _. - . . • .. .4 .,

",, ,'. ,, ' , .:-.-,.- .- ,.,'.--.''. " ..- ,.'.,- '. ." " ,.- " .- ", .''. '."o" '. ." .".'. ." ."-" -" oo. '.. - .- .- -....- .-.-. '. '. • . . .- L'...- .o 4'..

", ': '',,' ': ," ,''" '-''. ,-,'.'' " ',,.' ., , ' " ,"--'' -i" .. '-'-"- -"" """.""'-.- '--''-'"-.-'" *" " " o""" .' . • "".- '""
" -"" t 1' ' "'

' ° ° ' ' ''
'"' 'i ' '#"''° -'."-" '""''''' " ," "' " " ','' ',' "" '" '"," • "" " "" " ",, -4,.

IC FILE Copy

DOT/FAA/CT-86/27 SOFTWARE DEPENDABILITY
FAA Technical Center
Atlantic City Airport, ASSESSMENT METHODS
New Jersey 08405

Lfl

Shirley A. Prater
Ellis F. Hitt
Donald Eldredge

Columbus Division D T IC.
505 King Avenue ELECTE
Columbus, Ohio 43201 JAN15 198I "

JAN -"5*S-

November 1986

Final Report

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161.

L Distr i ,, -, -

LLS Depc:M ot Tpo 'xl
.

FederaI Aviation Administrationl ,

,. .. ,S' i
--

1 Reot o 2. Government Accession No. 3. Reaient"s Catalog No.

DOT/FAA/CT-86/27
4. Title and Subtl* 5. Report Date

November 1986
SOFTWARE DEPENDABILITY ASSESSMENT METHODS 6. Performing Organzation Code

7. Author(s) & Performing Organization Report No.

Shirley A. Prater, Ellis F. Hitt, & Donald Eldredge DTFAC-62
10. Work Unit No.

- 9. Performing Organization Name and Address
Battelle
Columbus Division 11. Contract or Grant No.

505 King Avenue NAS2-1 1853

Columbus, Ohio 43201 13. Type of Report and Period Covered
12. Sponsoring Agency Namet and Address

U.S. Department of Transportation Contractor Report

AFederal Aviation Administration 14. Spnorn Agency Code
Technical CenterJ085
AtlanticCityAirport,__NJ_80 ____________

i5. Supp lementary Notes
Point of Contact: W. E. Larsen/MS:21O-2

-. Ames Research Center
Moffett Field, CA 94035

16 Absract

The purpose of this document is to identify various software reliability

models, define the interface between a software reliability model with

a fault tolerant system reliability model, and provide a software depend-

- ability model (capable of evaluating availability, reliability, and safety)

that can predict the reliability of software prior to and throughout its I

development. The software reliability data and development of a software

reliability data base is also discussed.

17 KyW rs(ugse yA tors)1.Dsrbto ttmn

Sotaereiblty aey

"For Safe W tSugete byioa ATtchnical [18.maio iSriceto Statgfeent rina22 6

avilbliy deedbltfalIniie

Sotwr reiblt, aey

PREFACE

The dependability property of a computer system allows reliance

to be justifiably placed on the service it delivers, which is its behavior

as perceived by its users [AVLA86]. This concept naturally encompasses

the notions of reliability, availability, and safety.

The purpose of dependability is the design, implementation,

and use of computer systems where faults are natural, foreseeable, and 0

tolerable [TOUL76].

Dr. John P. J. Kelly

W... .p

/ :;.

-." z, [1-
S-(....,...,

5,S . S *;* ~ * -, ,* S %

TABLE OF CONTENTS

Page .
TECHNICAL REPORT ON SOFTWARE DEPENDABILITY
ASSESSMENT METHODS. 1-1

1.0 INTRODUCTION 1-1

2.0 BACKGROUND 1-1

3.0 SUMMARY 1-2

TECHNICAL REPORT ON REVIEW OF PREVIOUS STUDIES OFS
SOFTWARE RELIABILITY MODELS 2-1

1.0 INTRODUCTION 2-1

2.0 GENERALIZED IMPERFECT DEBUGGING MODEL. 2-5

2.1 Underlying Assumptions 2-5

2.2 Key Features 2-6

2.3 Study Results. 2-6

3.0 BUG-PROPORTIONAL MODEL 2-6

3.1 Underlying Assumptions 2-6

3.2 Key Features 2-7

3.3 Study Results. 2-7

4.0 GEOMETRIC POISSON MODEL. 2-8

4.1 Underlying Assumptions 2-8

4.2 Key Features 2-8

4.3 Study Results. 2-9

5.0 SCHNEIDEWIND NON-HOMOGENEOUS POISSON MODEL. 2-9

5.1 Underlying Assumptions 2-9

5.2 Key Features 2-9

5.3 Study Results. 2-10

®rS

-A i

TABLE OF CONTENTS (Continued)
.

Page

6.0 JELINSKI-MORANDA DE-EUTROPHICATION MODEL 2-10

6.1 Underlying Assumptions 2-10

6.2 Key Features2-11 'S

6.3 Study Results 2-11

7.0 EXTENDED JELINSKI-MORANDA MODEL 2-12

7.1 Underlying Assumptions 2-12

7.2 Key Features2-12

7.3 Study Results 2-13

8.0 GEOMETRIC DE-EUTROPHICATION MODEL 2-13

8.1 Underlying Assumptions 2-13

8.2 Key Features 2-14

8.3 Study Results 2-14

9.0 MODIFIED GEOMETRIC DE-EUTROPHICATION MODEL 2-15

9.1 Underlying Assumptions 2-15

9.2 Key Features2-15

9.3 Study Results 2-16

10.0 SHOOMAN EXPONENTIAL MODEL2-16

10.1 Underlying Assumptions2-16

10.2 Key Features 2-16

10.3 Study Results2-17

11.0 BIBLIOGRAPHY 2-18

TECHNICAL REPORT ON DEFINITION OF THE FAULT TOLERANT
SYSTEM RELIABILITY MODEL INTERFACES WITH THE SOFTWARE
RELIABILITY MODEL3-1

ii

.. *-.~. .~ - --,.

, , ''"' " " # ,' " ,' -" "°S
° '

.{ ,m WV.-" - .
"

V. "'# # " / ". ,, ,"," " m "* ," w' 5 ' - " ."- ", "-' .- -• -" , -% """-
o

"
,

TABLE OF CONTENTS (Continued)

Page
16

1.0 INTRODUCTION3-1

1.1 Background3-1

1.2 Objectives of the Research 3-1

2.0 CHARACTERISTICS OF THE SOFTWARE RELIABILITY MODEL
AND THE FAULT TOLERANT SYSTEM RELIABILITY MODEL 3-2

2.1 Software Reliability Model Outputs 3-2

2.2 Fault Tolerant System Reliability Models. 3-2

2.2.1 CARSRA Inputs 3-3

2.2.2 CARE III Inputs 3-4

2.2.3 NVS Inputs 3-6

3.0 INTERFACE DEFINITION 3-6

3.1 Interface Definition with CARSRA. 3-7

3.2 Interface Definition with CARE III 3-7 -

3.3 Interface Definition with NVS 3-7

4.0 CONCLUSION. 3-18

5.0 BIBLIOGRAPHY3-19

TECHNICAL REPORT ON FORMULATION OF THE SOFTWARE
RELIABILITY MODEL4-1

1.0 INTRODUCTION4-1

2.0 SOFTWARE CHARACTERISTICS. 4-1

2.1 Single Version Software. 4-1

2.2 N-Version Software. 4-2

2.3 Decision Algorithm. 4-2

2.4 Recovery Block 4-3

2.4.1 Forward Recovery Block 4-3 ~'

2.4.2 Backward Recovery Block. 4-3

iii7-

TABLE OF CONTENTS (Continued)

Page

2.5 Acceptance Test• 4-4

2.6 Rollback4-4 p

2.7 Roll-Forward 4-4

3.0 SOFTWARE INTERFACES4-5

3.1 Inputs 4-5

3.2 Outputs 4-5

3.3 Communications4-5

4.0 SOFTWARE FUNCTIONS 4-6

4.1 Menu Selection4-6

4.1.1 Placement Requirements 4-8
j..

4.2 Federal Aviation Administration (FAA)
Function Criticality Categories.............. 4-10

4.3 Function Block Reliability 4-11

4.3.1 Detailed Function Blocks. 4-12

4.3.2 Function Block States 4-12

4.4 Software Reliability Data Base4-17

4.5 System Reliability 4-17

4.5.1 Simple, High Level Model Example 4-19

4.5.2 Complex, High Level Model Example 4-21

4.5.3 Simple, Detailed Level Model Example...... 4-24

4.6 Safety 4-26

4.7 Availability 4-27

5.0 TIMING CONSTRAINTS 4-28

6.0 ACCURACY CONSTRAINTS4-28

6.1 Accuracy 4-29

.1S iv

4 . A * A ~ .' '

/

TABLE OF CONTENTS (Continued)

6.1.1 Accuracy of the Hybrid N-Version Software . 4-30

6.1.2 Accuracy of the Recovery Block 4-30

6.1.3 Accuracy Example for the Software NIP
Reliability Model4-31

7.0 RESPONSE TO UNDESIRED EVENTS4-32 N

8.0 ASSUMPTIONS 4-33

9.0 REFERENCES4-35

APPENDIX I. N-VERSION SOFTWARE CALCULATIONS4-37

APPENDIX II. RECOVERY BLOCK CALCULATIONS........... 4-53

APPENDIX III. FEEDBACK LOOP CALCULATIONS 4-64
APPENDIX IV. FEED-FORWARD CALCULATIONS 4-68

APPENDIX V. ANALYSIS OF SCOTT'S RECOVERY BLOCK
RELIABILITY MODEL 4-70

APPENDIX VI. ANALYSIS OF SCOTT'S N-VERSION
PROGRAMMING RELIABILITY MODEL4-82

TECHNICAL REPORT ON SOFTWARE RELIABILITY DATA
AND DATABASE5-1--

1.0 INTRODUCTION 5-1 '

2.0 BACKGROUND5-1

3.0 DATABASE PROGRAM AND SOFTWARE RELIABILITY DATA 5-2

4.0 REFERENCES5-6

.%

I

V:

I
LIST OF FIGURES

Pae

Figure 1. Interface Definition for the CARSRA and
CARE III Models 3-9

Figure 1. General Format for N-Version Software 4-7

Figure 2. N-Version Software with Acceptance Tests 4-7 .

Figure 3. N-Version Software in Which Only x Versions
are Used at a Time4-7

Figure 4. N-Version Software in Which the Outputs are
Subjected to an Acceptance Test if the
Decision Algorithm Fails 4-8

Figure 5. General Format of a Backward Recovery Block. 4-9

Figure 6. General Format of a Forward Recovery Block 4-9

Figure 7. Alternative Format for a Forward Recovery Block. . 4-10

Figure 8. Simple Block Diagram Example 4-13

Figure 9. Detailed Diagram for the Single Version
Software Function Block or the Decision
Algorithm Function Block 4-13

Figure 10. Complex, High Level Model Example. 4-22

Figure 11. Equivalent Diagram Indicating the Structure
Icons to be Used in the Detailed Diagram for
a Single Version Software Function Block 4-25

Figure 12. Basic Feedback Loop 4-64 .

Figure 13. Basic Feedback Loop Equivalent 4-64

Figure 14. Basic Feed-Forward Path4-68

Figure 15. Basic Feed-Forward Path Equivalent 4-68

Figure 16. Basic Recovery Block 4-71

Figure 17. Special Case Recovery Block with Only
One Alternate4-71

Figure 18. Basic N-Version Software 4-82 I
Figure 19. Basic N-Version Software Equivalent 4-83

vi

KKs

LIST OF TABLES

Page

Table 1. Breakdown of Technical Papers Reviewed 2-2

Table 2. Reviewed Software Reliability Models 2-3

Table 1. Breakdown of the CARSRA Inputs 3-8

Table 2. Relationship of the CARSRA Inputs to the
Software Reliability Model Outputs 3-10

Table 3. Breakdown of the CARE III Inputs 3-12

Table 4. Relationship of the CARE III Inputs to the
Software Reliability Model Outputs 3-14

Table 5. Breakdown of the NVS Inputs 3-16

Table 6. Relationship of the NVS Inputs to the
Software Reliability Model Outputs 3-17

Table 1. Correlation of Faults with the Detailed
Portions of the Single Version Software
Function Block4-14

Table 2. Correlation of Faults with the Detailed
Portions of the Decision Algorithm
Function Block4-15

Table 3. Truth Table of Function Block States 4-16

Table 4. Accuracy Values for the Simple Block
Diagram Example 4-31

Table 5. Reliability Values for the Software

Components in the Figure that Represents
the General Format for N-Version Software 4-37

Table 6. Reliability Values for the Software
Components in the Figure that Represents
N-Version Software with Acceptance Tests 4-41

Table 7. Reliability Values for the Software
Components in the Figure that Represents
N-Version Software in Which Only x Versions
are Used at a Time4-44

Table 8. Reliability Values for the Software
Components in the Figure that Represents
the N-Version Software in Which the Outputs
are Subjected to an Acceptance Test if the
Decision Algorithm Fails4-50

vii

',SWIN",

LIST OF TABLES (Continued)

Pa ae

Table 9. Reliability Values for the Software
Components in the Figure that Represents
the General Format of a Backward Recovery
Block 4-53

Table 10. Reliability Values for the Software
Components in the Figure that Represents
the General Format of a Forward Recovery
Block 4-56

Table 11. Accuracy Effects on This Example When Less
Than n Alternates are Actually Used4-59

Table 12. Reliability Values for the Software
Components in the Figure that Represents
a Variation of the Forward Recovery Block 4-60

Table 13. Comparison of Reliability Values When Less
Than n Alternates are Actually Used4-62

Table 1. Input Data Used by Various Software

Reliability Models5-3

Table 2. Possible Input to the Database Program. 5-4

Table 3. Possible Input and Output for the Database
Program5-5 1.

viii

1-1 .

TECHNICAL REPORT

on

SOFTWARE DEPENDABILITY ASSESSMENT METHODS

1.0 INTRODUCTION

p

The increasing application and criticality of digitally implemented

flight control functions dictates a need for highly dependable software.

A variety of methods for creating reliable software have been developed (e.g.,

software engineering, higher order languages, testing and debugging procedures).

These methods do not inherently provide a measure of reliability improvement

obtained using the methods. Methods of assessing the reliability and depend-

ability of software are needed. This effort was originally entitled "software

reliability assessment methods" but as the work progressed, Battelle and

our consultant, Dr. John P. J. Kelly, determined that systems which provide

functions critical to the safe transportation of passengers must be more

than reliable, they must also be dependable. As stated in the preface written V

by Dr. Kelly, the concept of dependability encompasses the notions of reliability, ,i.e,
availability, and safety.

The overall objective of this research was to investigate methods

of assessing the reliability of digtial avionics software developed using

primarily higher order languages.

2.0 BACKGROUND

Many software reliability models have been developed which predict

the reliability of software based on various input parameters. That work
was sponsored by the USAF Rome Air Development Center (RADC) and NASA's Ames

and Langley Research Centers. Many of these studies attempted to analyze

an existing data base to derive a prediction methodology. Many of these

p .

- p . . S *h~e . ~ A C w

1-2 '

data bases were files of historical significance, and were not real-time

airborne software systems developed using higher order languages. Consequently,

many researchers have found the popular software reliability models are invalid.

Recent work involved carfully designed and controlled software development

experiments using a limited number of programmers programming a limited number

of problems. That work, in turn, has been criticized as not representative

of real-time digital avionics software.

3.0 SUMMARY

This report is in five sections. The following four sections present:

(1) a summary of the results of previous studies of software
reliability models applicable to real-time software

(2) a definition of the software dependability model interfaces

with fault tolerant system reliability models

(3) formulation of a software dependability model

(4) a definition of software data to be collected by the avionics
system developer for storage in the software dependability
data base.

". .p

4.,'

2-1
S

TECHNICAL REPORT

,. .. ,

on .'

REVIEW OF PREVIOUS STUDIES OF
SOFTWARE RELIABILITY MODELS

1.0 INTRODUCTION

Several studies of software reliability models have been reviewed.

In addition to those models covered in the "Comparative Analysis of Fault

Tolerant Software Design Techniques", prepared by Battelle Columbus Division

on February 15, 1984, other models have been reviewed through the use of

published technical papers and a software engineering textbook.(1) The

technical papers are listed in Table 1 and divided into the following cate-

gories: "For Information Only", "Discusses Reliability Modeling Applicable p
to Real-Time Software", and "Discusses Reliability Modeling Not Applicable

to Real-Time Software". Table 2 gives the names of the reliability models ,

and indicates whether or not they are applicable to real-time software.

Only the software reliability models which are applicable to real-time software
.%'.

will be discussed in further detail. .

The following software reliability models have the characteristic

of being applicable to real-time software. The criteria used to determine -

real-time applicability was: 5

(a) The model is not extremely difficult to solve numerically.
Hence, only a reasonable amount of computations is required.

(b) The model must take into account the test time. S

(1) Martin L. Shooman
SOFTWARE ENGINEERING Design/Reliability/Management,
McGraw-Hill Book Company, New York, 1983.

S"

v 2-2

m ~ ~ ~ ~ ~ o RehdTamatiors m et~lo;-lw.

- ty PC.__ *a

ArLox ~tor rloac- oor''cj D. ~ r~ ht"3., Im~ 1..A

BeoL~Of 0 Lt,-to ruLL~r%&~ V~ros-r a, .. i0 4 19 xw~r

14ow cd IsIiur-,vl'L% -.
Arp- Tha. %nd How. CQ^r Bey Ut--lc"ted jSPt m~ Veq ur, p .GNr. ,

ThLU 'r %me gn On Rpwe.t iquc V. rnk to
M-caes for raLr IR Jk sval-Is I rw I ~ Ir

0
tbh~,V~,

App o - t, ,, - 4 ptftLc)'Cr t. Npmr 116 .Pp. *

*Tlne Ljrawo SeiFtwso.rc %tg, t JrZ - 6~l
lkcmoLi "_CWom Tr oitenimae VQ"e Q-4 Ni,tar 5,, AprilIqB~S%

ar~i Nv&Lm.CLti~ -W. -bq,&~I, N* t~nw I+ ______1_%., p.M8

A sumdf vitte Ee TrcanWc'TriMSO0' Sda.io~re
DSCSWlon~ *Ag ArLAS! E~ircz M YoIlr,.A SE-Q G'.k'tmbf G'.

4r; Cnpmtvna saft..'.,t e 8t '. l~~ Septmooa Iqso . Soi- SO.
A rt of S.'-We %SEE Tr~r~~,q-- ,n Or' Saftvoee

I=r &.~z~ W- h'p I r'A 6 L

ra.: A. MaGAIi, F..t

.te~eau" Wp -% C 't' kund 4, CttiA :981.1~
M"arol,~tf~U 3~ WW~e Amdfe pp 31 345 *O~o

Rc"0k, ______On

8.srtg~ rectmar'-tq .. Ta ' 4'q'. r 'rcn.&-.m 0,r' Q&Lcb

%Izu, kh Ntd;C ,- R-)I N "rOe 5,Ap 9
Pe J*7-4t, p. _____ _____ _____

4k& 'CC tr~kc-.AVOr
Grwth v&*dolv' ;or r C lt 'Q-A T --*Q & Dc'cef*',o r

&,Or____ qas, ~ " xeI xw
CO.:lr~W

SI rh-DmNai S9ig O I -- N

%ELFC - :N:A..' PAPERS RE'A.E

2-3

c,,

NeL~szrl. Im ut o-a~ ac M.O-

Selcwcre x

Prpotioa Ntoudr tel x

Poi- m K cLL11 '

We r'C p c.o"r.oA M-OdeI I a

CorcoranYk~nc~rtn- Zhma.N'Loka

Nl-adaL

W-x --iL o 7-d m Fb kr Njc x x

Lm trc Pa..~ 6i.L La R Lcblt - -p Maor.rldx

TABLE ~~~~~~ ~ ~ .2.RVU OFWR ETBI1YMDL

Goei Crot~Nor~ Nu wu.. Ps.~o, r1.~~j%

2-4 __

N App L,-caW L Nct A pp.cLL tc
ReAAW -Ur e '-cdtl L. Reaons

I , r ,-
c hc. ", k

I.' I -Ntodf~e ~L.~O~t~rCflMLOCLJ by Ske'-t

~~,oornorr1'-t~oA t'Aode

S7,oomro- Expor-r~tio-l Nt-odttl

L.0 Shooryo ,- NtOraxJ -n lo:per LMi .d &dfdI X

N~t~qcrntc's RevLSPed S~noorno KvodeL '

Ntar-kcy Sinocrn,,r, ond Tr*ved X

L.-te1CVod eZreCaSnr9 Fa'Ire Qaobe Ntoc i

Lttl Co 0 C" Narkov ."A

9es u.n ~i~i~~~ ty G ro,.t h Niodi.r Ig LLtt Lv-erocd

.. 1

* Reasons:

a. The model is extremely difficult to solve numerically. Conseauently, the

variables must be selected so as to limit the amount of computation required,

b. The test time is totally ignored.

c. The technique(s) used is (are) undesirable in software reliability models.

d. The model does not adequately address the overall software reliability problem.

e. There are massive difficulties in estimating the parameters.

f. Some of the assumptions are quite questionable.

TABLE 2. REVIEWED SOFTWARE RELIABILITY MODELS (Continued)

in

-S4

2-5 N.A

(c) The techniques used in the model must be reasonable. (For
example, the cumulative averaging technique is undesirable
in software reliability models because this technique causes .
early data points to be weighted more heavily than later ones.
Thus, with this technique, even the most erratic error data
will eventually project a "fitted line" as the sample size
becomes sufficiently large).

(d) The model addresses both the dynamic and static measurements:

(1) Dynamic measurements
* hazard rate, z(t) P,
@ reliability function, R(t)
* mean time to failure, MTTF

(2) Static measurements
@ total number of errors
* total number of remaining errors S

(e) The parameters are not diffcult to estimate.

(f) The assumptions are reasonable.

The underlying assumptions, key features, and study results are

summarized below.

2.0 GENERALIZED IMPERFECT DEBUGGING MODEL S

2.1 Underlying Assumptions

a. All failures are observable and independent. '"

b. The time to remove a failure is considered to be negligible
and is ignored in the model.

c. Errors are not always corrected when detected and errors may
be spawned when correcting errors. S

d. Testing is of uniform intensity and representative of the
operational environment. .;

e. Inputs which exercise the program are randomly selected.

f. The failure rate at any time is proportional to the current •
number of errors remaining in the program. *. ,

g. The failure rate between the (i-1)th failure and the ith failure

is x(ti) = [N-(i-1)]t--1.

S

2-6

2.2 Key Features

The failure rate is of the form

A(t) = (- i-)t I

with o = a proportionality constant;

N = the total number of errors;

p = the probability of perfect programmer debugging behavior

= the parameter that controls the shape of the failure rate.

The reliability functions is

R(t) = exp (- t (N-p(i-1)) t=)

and the Mean Time to Failure is

MTTF i { _ I I ' (=).(N-p(i-1))

2.3 Study Results

This model cannot determine the effect each bug contributes to

the overall failure rate without continuing to run the program because the

instantaneous failure rate will be zero when a bug is found and immediately

removed. The model provides a good fit with data. The parameter estimates

are reasonable for the data sets tested.

3.0 BUG-PROPORTIONAL MODEL

3.1 Underlying Assunptions

a. The number of errors in a program is a constant and decreases
directly as errors are corrected.

b. Software errors are caused by the uncovering of residual bugs
in a program.

a.

~~~~~~~~~~~~~~~~...' . . .- . . .. . ... .. . .. .. . .. .•"..... ...... ••.., . .. . * , - .



-I'

I

2-7

c. The probability that a bug is encountered in the time interval,
Lt, after t successful hours of operation is proportional to
the fractional number of remaining bugs.

d. The fractional number of remaining bugs is independent of the
operating time.

"..

e. The rate of error correction is constant.

3.2 Key Features
i

The hazard rate is of the form

z(t) = KEr(T) = K[(ET/IT) - Ec(T)]

I

where K : an arbitrary constant; and

Er(T) the number of remaining bugs;

ET = the total number of errors originally present;

IT = the total number of machine instructions; and

Cc(T) the number of corrected bugs.

The reliability function is -7

R(t) = exp {-[lK r(T)]t} = exp {-K[(ET/IT) - E:c(T)]t

and the Mean Time to Failure is

MTTF= 1 _ 1 with E-T K and POIT
KEr(T) (1--T) IT ET

where o = a constant rate of error correction.

3.3 Study Results

The overall behavior of the model is verified. However, the errors .'

between measurement and prediction had a standard deviation of 24 percent. _.

When seeking historical data for estimation of reliability parameters, the

examples should closely match the intended application and phase.

t- I*



2-8

4.0 GEOMETRIC POISSON MODEL .

4.1 Underlying Assumptions

a. There is an infinite number of errors.

b. Each fault in the program is independent of the others and

each of them is equally likely to occur.

c. The errors do not have the same likelihood of detection.

d. During a fixed interval of time, the number of errors detected
follows a Poisson distribution.

e. During each of these periods of time, the detection rate is
constant.

f. Data is available only at discrete intervals. -
.1

g. The detection rate in successive time intervals forms a geometric
progression.

h. Each error discovered is immediately removed or no longer counted.

i. No new fault is introduced during a correction time.

4.2 Key Features

The hazard rate during the ith time interval is

z(ti) = XKi-1

where ti = the ith debugging interval;

= the average number of faults occurring in the first
interval;

K = a proportionality constant, 0 < K < 1.

The reliability function is

R(t) e -xKit



2-9

and the Mean Time to Failure is

MTTF- -

X K1

4.3 Study Results

This model gives identical results as the Schneidewind Non-Homogeneous

model.
*.

5.0 SCHNEIDEWIND NON-HOMOGENEOUS POISSON MODEL

5.1 Underlying Assumptions

a. The number of errors which is detected during a time interval
and the collection of error counts over a series of time intervals 4.

are modelled by a random variable and a stochastic process.

b. Prior to the selection of a test plan, all errors are equally
likely. I.,-

c. The number of errors detected in each time interval is inde-
pendent of the number detected in another time interval.

d. Detected error counts in each interval have the same type of
distribution but have different means.

e. The mean number of detected errors decreases from interval
to interval.

f. The rate of detection in an interval is proportional to the
number of errors in that interval.

g. The error process is a non-homogeneous Poisson process with
an exponentially decreasing intensity function.

h. The error correction rate is proportional to the number of
errors to be corrected.

5.2 Key Features

The hazard function is equivalent to the predicted number of errors

for each interval i where



2-10

mi = (-/S)[exp (-8(i-1)) - exp (-Bi)]

with mi = the estimated number of errors in interval i;

= a model constant; and

= a model constant (error detection rate at time 0).

The weighted squared deviation is

t
S~w = E exp (9i)[(-/B)[exp (-Bi)][exp (3)-I] -Xi]2.

k=1

5.3 Study Results

This model is equivalent to the Geometric De-Eutrophication model.

However, this model offers greater flexibility than the Geometric De-Eutro-

phication model.

The required test data for this model consists of the sequence

of the number of errors in each time interval.

6.0 JELINSKI-MORANDA DE-EUTROPHICATION MODEL

6.1 Underlying Assumptions

a. A program can be decomposed into a number of paths or cases.

b. The identification of paths will be done at a high enough level
to yield a relatively small number of cases (<10 0).

c. The number of machine language instructions remains relatively
constant.

d. Failure is caused by rare combinations of input data and path

traversals, with the time between failures governed by an
exponential distribution, yielding a constant hazard.

e. There is a fixed number of errors in the program,

f. No new errors are added during the debugging process.

g. Each error discovered is immediately removed.

h. Each error has an equal chance of being detected.

a,'. . -..... .,.,.... ... . ,.... . .... . .......-.-..-. . .-.. . .... -...-.-.. ... ,. .,-,. ..-..--.----....... . ., . .-.-..- ,- .- .- "'."



2-11 %

i. The failure rate is proportional to the current error content
(number of remaining errors).

j. The program is not being altered except for error correction. ,

k. Only one error may occur in a given time debugging period.

6.2 Key Features

The hazard function is of the form 0

z(Xi) = t [N-(i-1)]

with N = the total number of initial errors in the program;

0 = a proportionality constant;

Xi = the length of the ith debugging interval (the time between
detection of the (i-1)st and the ith errors); and

i= the number of errors discovered.
I

The reliability function is
-p

R(Xi) = exp [-t(N-n)Xi]

and the Mean Time to Failure is

MTTF = 1/[o(N-n)]

where n = the number of errors found to date.

6.3 Study Results

The model provides a good fit with data. The model runs into slight

trouble with its "no new errors" assumption. At the "last" error, the time

between errors shows a sudden sharp increase which is somewhat optimistic.

The larger the data set, the more likely the sudden improvement and the impli-

cation that debugging is complete.

%I%

Le|



2-12

This model requires a sequence of times between failures in order

to estimate the parameters.

7.0 EXTENDED JELINSKI-MORANDA MODEL

7.1 Underlying Assumptions

a. There is a fixed number of errors in the program.
I

b. No new errors are added during the debugging process.

c. Each error discovered is immediately removed.

d. Each error has an equal chance of being detected.
S

e. There is a constant failure rate between consecutive errors.

f. A program can be decomposed into a number of paths or cases.

g. The identification of paths will be done at a high enough level
to yield a relatively small number of cases (<10 0).

h. The number of machine language instructions remains rel tively
constant.

i. The failure rate is proportional to the current error content
(number of remaining errors). 

Zr

j. The program is not being altered except for error correction.

k. More than one error may occur in a given time debugging period.

7.2 Key Features

The hazard function is of the form

z(ti) = o[N-nil ] I

where , a proportionality constant;

N = the total number of initial errors;

: the cumulative number of errors found through the ith.I
time interval ; and

ti  the ith debugging interval.

I



N

2-13

The reliability function is

R(t) = e - o(N-ni)t

and the Mean Time to Failure is

MTTF = 1
O[N-n i]

p

7.3 Study Results

This model requires the number of errors in some uniform time period

to estimate the parameters.
3

The model provides a good fit with data. The model is somewhat

inconsistent and less smooth due to its use of actual errors in its hazard

function. Fairly small changes in the data give a significant change in

the model's shape and prediction. At the "last" error, the time between

errors shows a sudden sharp increase which is somewhat optimistic.

8.0 GEOMETRIC DE-EUTROPHICATION MODEL

8.1 Underlying Assumptions .

a. There is an infinite number of total errors.

b. Each fault in the program is independent of the others and

each of them is equally likely to occur. -,

c. The errors do not have the same likelihood of detection.

d. Each error discovered is immediately removed. The time to
correct the detected faults is negligible.

e. No new fault is introduced during the correction time. S

f. The failure rate between successive errors forms a geometric
progression and is constant in the interval between errors.

% *~S . * -- °. *



WXW-KKU WN 'V IWV TV w".v Vwyvy~rw~wyT~ryY11-

U.-j

2-14

8.2 Key Features

The hazard function is

Z(Xi) = DKi- 1

where Xi = the ith debugging interval;

D = the initial error detection rate;

K = a proportionality constant; and

i = the number of errors discovered after i intervals.

The reliability function is

R(Xi) = exp[-DKnXi]

where n the total number of errors discovered

and the Mean Time to Failure is

1
MTTF = - .

DOKn

8.3 Study Results

The test data necessary to apply this model is the sequence of

times between errors.

This model gives a reasonable fit with data. It is also fairly

consistent in its results when only part of the data is used. The Geometric

De-Eutrophication model appears to be slightly better than the Jelinski-floranda

De-Eutrophication model for data.

,-.

. '.- w" .', .''" "" % '.""," -" -" -'.-' -" -'- -'- - .-" '" ..' " =% " ,"m%'r'''"""" ' ''. I



do.,

I.I

2-15
S

9.0 MODIFIED GEOMETRIC DE-EUTROPHICATION MODEL

9.1 Underlying Assumptions

a. The program contains an unknown number of errors.

b. Each fault in the program is independent of other fau':S ar-:
each of them is equally likely to cause a failure duri.ng tes:r:.

c. The number of faults detected in any time interval is 4ce:encer*
of that in any other time interval.

d. The error correction time is negligible. Eac7 error -s:'ve-e,.
is immediately removed.

e. No new errors are added during the debugging process. I

f. The program is not being altered except for error co-ec:'or.

9.2 Key Features

The hazard function is of the form

z(ti) - DKMi-1
I

with D the fault detection rate;

K = a positive constant less than 1;

Mi.I = the cumulative number of errors detected; and

Mi = the cumulative number of errors found up to the i-th time
interval.

The reliability function is

MI

R(t) = e " D K
Mnt

and the Mean Time to Failure is

I

MTTF = -

DKMn

with n = the total number of time intervals.

A.1



.Z

2-16

9.3 Study Results .

'.%

This model was not verified with any test data.
N

10.0 SHOOMAN EXPONENTIAL MODEL

10.1 Underlying Assumptions

a. The numwe of errors in a program is a constant and decreases
directly as errors are corrected.

b. The error detection rate (failure rate) is proportional to
the number of remaining errors.

I

c. The total number of machine language instructions remains constant.

a. Operational software errors occur due to the occasional traversing
of a portion of the program in which a software bug is hidden.

e Each error has an equal chance of being detected.

f. Software errors occur with a probability distribution of

f(t) : xexp (-xt)
S-."

where t = CPU operating time; and

X = a constant of the hazard function, z(t).

10.2 Key Features

The total number of errors remaining in the program debug time

T is

%
er(T) : (E/I)-ec(,).

where E = the total number of errors present at time T 0;

I = the total number of machine instructions; and

I

... °.4., - °-



2-17

The hazard function is of the formi

z(t) =Cer-)

with C =a constant of proportionality.

The reliability function is

R(t) = exp {-C[(E/1) -ec(-,)]tl

and the Mean Time to Failure is

MTTF =1/{C[ (ElI) c-,)

10.3 Study Results

The Shooman exponential model reduces to the Jelinski-Moranda

De-Eutrophication model. This model requires a sequence of times between

failures in order to estimate the parameters.

WPP



2-18

11.0 BIBLIOGRAPHY

SYac, "Timie Detenoen t Sof:'vare Reliaoi lit,, -Ioceln tay
!iortn Car-olina State University, Raleign, Nor-,n Carolina, 1982.

2.Gecnart, L. S., Greenwalo, C. M., Hoffman, m. $A., and Osterfeic,
U. r", Scft~.are Reliaoili*-J: Determination ano Preoiction',
,r es ity of Da,"t cn, Dayton, Qnlo, Reoorz. Nurtee AFFD)L-7R-78-77,
jne 1973.

G~ .cel, Arnrit L., 'G- l & oioez or Soft,,are Peiacid 1  Ases-:nt
S -rac, se uni ies,, Sjrac.,se, N~ Yor. , Report jumrcers

~DC-R83-15anc 2-' 39240) August 1983.

izEllis F., Aezz, 2effrey 2., arc 2Sricgman, Mi:naei S.,
orrparative A.a:,,s~s of Fault Tolerant Softvare Design Tecnnicues ,

B a t telIe ;Iemro ria I nstitite, Columous, Onlo (Pre~arec uncer Contract
Numoer iASl-l7.112'J , FenrUary 15, 1984.P

5. LiZtlewo, Bev and Sofer, Ariela, "A Bayesian Modification to the
jell nsx:i-Moranda Software Reliacility Growth, :ocel", City
universiti, Loncon, England, Report Number NASA-DR-169743, 1983.

6. Shooman, Martin L., SOFTWARE E-NGINEERING Desicn/Reliabilitv/
Managemnent, M.cGraw-Hl BOoK Company, New YorK, 1983.

7. Sukert , Alan N., "A Software Reliability Mlodeling Study", Rome Air
Development Center, Griffiss Air Force Base, New York, Report
flumoers RAOC-TR-76-247 and AO/A-030-437, August 1976.

%'
N ' 7



3-1

TECHNICAL REPORT

on :IN-

DEFINTION OF THE FAULT TOLERANT SYSTEM
RELIABILITY MODEL INTERFACES WITH
THE SOFTWARE RELIABILITY MODEL

1.0 INTRODUCTION

1.1 Background

interface checks are an attractive form of error detection

(at least as far as a program running on the interface is concerned)

since they are performed automatically and efficiently - often in parallel

with the execution of the requested operation - and cannot be suppressed p
by a programmer. However, interface checks can only check for correctness.

of use of an interface and cannot check whether any usage corresponds

to that of a correct program. It has been assumed that interface exceptions

and failure exceptions indicated the presence of design faults in the

program and component faults in the interpreter, respectively. If this

was always the case then the implementation of fault tolerance by the

program would be much simplified since there would be a direct relationship

between the type of a fault and a particular exception.

1.2 Objectives of the Research

To define the interface of the software reliability model with

the fault tolerant system reliability model, it is necessary to look

at the corresponding outputs and required inputs. It is desired that

the interface definition permit stand alone use of the software reliability

model with the outputs serving as inputs to the fault tolerant system

reliability model or a combined operation of the hardware and software

models of the state space. The outputs and inputs are discussed in detail

below.

• .. . , , . --- , o . , , . , . . . .



3-2
'i',,

2.0 CHARACTERISTICS OF THE SOFTWARE RELIABILITY MODEL
AND THE FAULT TOLERANT SYSTEM RELIABILITY MODEL

2.1 Software Reliability Model Outputs

Software reliability models that are applicable to real-time

software address both the dynamic and static measurements. The corresponding

outputs are:

(1) Dynamic measurements
9 hazard rate, z(t)
e reliability function, R(t)
# mean time to failure, MTTF

(2) Static measurements
* total number of errors
* total number of remaining errors

2.2 Fault Tolerant System Reliability Models

In accordance with the "Automated Reliability and Failure Effects

Method for Digital Flight Control and Avionic Systems, Volume I: Evaluation",

this report will focus on the top two models. The evaluation lists the

top two models, in order of preference, as CARSRA (Computer Aided Redundant

System Reliability Analysis) and CARE II (Computer Aided Reliability

Estimation, version I). A different evaluation, sponsored by NASA Langley

Research Center, indicates that the CARE III model is "best suited for

evaluating the reliability of advanced fault-tolerant systems for commercial

air transport."( 1 ) Therefore, this report will discuss the updated and

improved CARE model: CARE III. In addition, N-Version Software (NVS),

obtained from multi-version programming, will be considered since it

is a primary method for providing software fault tolerance and was not

covered in the above reports.

(1) "Evaluation of Reliability Modeling Tools for Advanced Fault-Tolerant
Systems", AIRLAB INTERFACE, NASA Langley Research Center, Hampton, Virginia,
December 1983, p. 2.

-.. : .- *4* 1 - . . . . . . . . .- .~ .'



3-3

2.2.1 CARSRA Inputs

The following items comprise the required input data and the

~corresponding variable names that are used by the program.

' m number of non-dependency stages, NIS
i @ number of dependency stages, NOS

e assigned state number, NST

@ dimension of the stage, NDIM

e number of modules in the stage, MCON

e transition rates, LMDA (NST, K, J) with J=1, 2 .... NDIM and
K=1, 2,....(NDIM-I)

•transitional readiness time span, AMT, and time increment,
ADT

ofailure probability time span, FPMT, and time increment,
FPDT

•number of dependency modules in the system, NARY

9 each dependency module, NINO (1) with I=1, 2 .... NARY, specified
,:N by NINO and NDEP

e number of functional readiness configuration entries, NAV

• each configuration is characterized by up to three failed
modules, NA (1, K), with K=I, 2, 3 where the module is indicated
by XXY with XX being the stage number and Y the module number
within the stage

9 number of stage failure patterns equivalent to system success,
NOSCOF

e success configurations, ICOF (1, J) with I=NOSCOF and J=l,
2 .... 50

T accuracy indicator, NACCUR

'p.-



3-4

2.2.2 CARE III Inputs

% The fo'lowing input data is required to describe the system.

The corresoondin. variable names are given after the description.

# variable which defines if all of the fault handling models

have exponential distributions only, MARKOV

e numoe' of fault types to be included in the model, NFTYPS

* parameter for transition between the active state (A or
Ac) to the detected state (0), DEL(i)

e parameter for transition from the active state A to the
active error (erroneous operation state) AE, RHO(i)

o parameter for transition from the error producing state
to the detected state or to a single fault failure, EPS(i)

* indicator variable defining if the DEL parameter is for
an exponential or uniform density, IDELF(i) - disregard
if it is a Markovian model

o indicator variable defining if the RHO parameter is for
an exponential or uniform density, IRHOF(i) - disregard
if it is a Markovian model

o indicator variable defining if the EPS parameter is for
an exponential or uniform density, IEPSF(i) - disregard
if it is a Markovian model

o probability that a faulty operation will be successfully
masked by the system, C(i)

o probability that a module detected as faulty in an active
state A is identified as a permanent fault and isolated
from the system, PA(i)

o probability that a module detected as faulty in a benign
state is identified as a permanent fault and isolated from
the system (for intermittent or transient fault), PB(i)

o exponential rate (intermittent or transient fault) for
transition from an active state (A or AE ) to a benign state
(B or BE), ALP(i)

o exponential rate (intermittent fault) for transition from
a benign state (B or BE) to an active state (A or AE),BET(i)

5. . ... . . . . . .



6

3-5

e flag for outputting the moments of single and double fault

coverage functions, CVPRNT

* flag for a plot of the single and double fault coverage
functions, CYPLOT

* Y-axis scale for plotting coverage functions, IAXSCV

e parameter governing the step doubling rule used in the solution,
DBLDF

e coverage function's truncation value, TRUNC

s number of stages in the system, NSTGES

* number of identical modules in stage number x, N(x)

* minimum number of modules needed for stage ISTG to be
operational , M(x)

e operational configurations for stage x, NOP (i,x)

# option for the output printout, IRLPCD

* option for the summary information to be plotted against .
time, RLPLOT

@ axes specification for the summary information plot, IAXSRL

e number of fault types that a stage is subject to, NFCATS(x)

* fault types specification for stage x, JTYP(j,x)

s parameter of the Weibull fault occurrence rate Xw(At) - 1 "
for fault type j for stage x, OMG(j, x)

@ parameter X of the Weibull fault occurrence rate for the S
fault type j for stage x, RLM(j, x)

* flight time for wnich the system is to be assessed, FT

s time scale used for the flight time, ITBASE 0

* number of equal steps that the flight time is divided into,
NSTEPS

e flag indicating whether or not the system fault tree is
to follow, SYSFLG "

e flag indicating whether or not a critical pairs fault tree
is provided, CPLFLG

0 %



3-6

0 parameter used to limit the number of terms used in computing
the coverage failure probability, PSTRNC

e parameter used to limit the number of fault vectors used
in computing the probability of system failure due to a
lack of coverage, QPTRNC

@ parameter affecting the computation of the summary information,

KWT

s identification label for the system represented, TITLE

* logic statements to form a single system fault tree

* identification label for the critical pair tree, TITLE

e logic statements for the critical pair tree

2.2.3 NVS Inputs

The following parameters are necessary for the NVS reliability

analysis.

9 number of active versions, n

* error probability of version #i (with qi=1-pi), Pi

* correlation coefficient between #i and #j (with qi,j=l-Pi,j),
Pi ,j

e maximum number of versions allowed to be faulty at any crosscheckpoint, m* "

* maximum number of versions allowed to be faulty in common
mode, f*

3.0 INTERFACE DEFINITION

It is desired that the software reliability model be able to

be used in a stand alone environment or in conjunction with the fault

tolerant system reliability model. Therefore, the inte'face definition

shall dictate which outputs of the software reliability model must serve

as inputs to the fault tolerant system reliability model. For clarification,

this will be done individually for the three models: CARSRA, CARE III,

and NVS.

....... .........-. ,.......-. ...



3-7

3.1 Interface Definition with CARSRA

The required inputs for the CARSRA model are from three different

sources: (1) inputs into the software reliability model; (2) outputs

from the software reliability model; and (3) inputs only for the fault

tolerant system reliability model. Table 1 shows the distribution of
the various CARSRA inputs between these three categories. The inputs

from the first two categories are transferred from the software reliability

model into the fault tolerant system reliability model at the interface.

Hence, the interface definition for the CARSRA model is shown in

Figure 1. Table 2 shows the relationship between the various outputs

from the software reliability model and the CARSRA inputs (given in the

second column in Table 1).

3.2 Interface Definition with CARE III

Similar to the CARSRA model, the required inputs for the CARE

III model are from the following three sources: (1) inputs into the

software reliability model; (2) outputs from the software reliability

model; and (3) inputs only for the fault tolerant system reliability

model. The distribution of the CARE III inputs amongst these three categories

is shown in Table 3. Figure 1 remains applicable for defining the interface

of the software reliability model with the fault tolerant system reliability

model. The correspondence between the software reliability model output

variables and the CARE III input variables (given in the second column

in Table 3) is shown in Table 4.

3.3 Interface Definition with NVS

For the NVS model, the required inputs are in the following

two categories: (1) outputs from the software reliability model and

(2) inputs only for the fault tolerant system reliability model.

Table 5 shows the breakdown of the NVS inputs into these categories and

Table 6 gives the relationship of the NVS inputs to the software reliability

model outputs.

4 -1

..- K. .- , .?.-.. .. . ,_ , - .. .. . • . . . . . . . _ . . . . . . . . . . •



3-8

pQ C>U-

Cj C -

E

ea >. A

-~C A-U Q. ~ A-U * C

CLC -1~. -
Q) SC- ' C C. S.- -m Ne

I -- > U-z

-'C 0 I- 0~ .U '-

C aj C

3 j r_.- E -0E' d

CL.

CL 'a

(U. S- (A S-
C S- Q) CU.

C. 0 4- 0



* 3-9~

CU

z~ CL

Ic. C:
=C
ra czE

-L V)~

'SL

0 s-

C=L
a) eT-



3-10

4- L

%.C
N'C

9, .. c

9,L

=7

E I

a'ea

LL

E aw

EL

'V L

CLC

LA--

m ro m=i . mu EmC E4)L
S0 CLmC ' oA

__CL )U

W I



3-11

ci4

L.L.J

= 0J .-

-=

= CJ

-3 0

~LLn

LL. -

.A0

j LL.

0 -wi
U..

0- u CA

LO).



3-12

0V)
c CL)C ~>,0

a ) C 0 . L 0

0) S,- +j E. V '
fuC~ .4- 4-1 .4'4-)12).~

S.. (1Cr > - 0 - E 0 -

cu0 - = 0 C).0 0 S.. ( 4-* I 2> L~ )A .4-1 4-)

cu0 C (A C) u .. * - 4. ~
.- 0) . - m). 4- ) 4C-j A V

IL ~~~~4- 4.j +J-) 0 0VA '- . ~
C '4-.. C) C- 41 4- " i-> .

C-) - a -) C L EV a; cA-

(/1 0C 0 4- >< W) 4-) CV- W/ C

0.' - S.) 04- 0) 0- r_ .... *-) Q) - C,

C.V j_ CV =V0 =V =. 4- 5. c.- a)- C) e
'a. C( c- 4-A S..S- O S.) - *
S- S..'V S..0 (C 0C )c 4 - )-

LL 0- 0j CO 0u __C01C. .

M*cn "-)- Eu . 5-0 0L U)) S..
0(C u C- .... S- >V 0 a)0 E-0 -(a (vC .0 1

-~ ~~~ cC mV 'VC x.0 -~ =4'- ->-4 - V)
* - I- -VS)>M. ~ U > -J IV I- 4--S/

V)

CL-

Q .>- I V..

%) LL '-0 5/)
EE0- - m V (A (v.4.w - -

% r.. >,LA C- ) a ) 4- C) 0) C0) C-r ) S u S 4 L

- 0 4-'). 4C-V -i -Vi 'V -j (0.0 0C

4" Z )) =-0E E -4' E r- 4-'>, S- C S-U VI -
0.V r) ) VI( o) - V 00) 0 LU CL 0

> rO (10 'a- mV , 10 4> - 4- _cm >,-
0)E a)' LM( 4- -- V ea-'-'(a ) cu m1 4-

.0 >, 4-'.- '4-C 4- 4-.C Q) 4-J4-J 0)' - . -

w.. .. ) V)'0 e3 =A vi0( .. m In 4-) -j ' td m 4- C0 a4- LU
-a0 .0-- -C (.- 4-) =Co.- 4 ro' 'V"0o ) ." - ) C

2.0 C. 4' ) 4- 4- C E C-4 CE 5. )( L..'

4' V-0 4-)0 )_) C- 4-' c . or- eaV
S... M 4-C 4--~ fu.4)C . >,(A. roC - -'V m '( ro ) :

0 4-C, 4-J E E -E- - *EW 4-
0V -0 0 V( S.- -V( L. .- C 4 > 0 )N

a) - - ) a)) a) u u a). C5- ) C-S- -
0.0. 5-V Q0-) .0.- L)4-j -.4-)C0.- CLJC4-. m 0(W4--4-) 5.'.

a)0 eo ro ) m u> cc- c 'Q 1 MV C_ C w ) W

3 EU 0 0)(A 0 4-'4- 0'- 0 4-'c 0~- 0. 0 cl00 V

rS4- o S Cu 0.0 0.V'S-Vw0w 0V 0 -0 0 cc X - 0 X -

5/) 0t a) cc 0S

4- 0) 4-' 4- 4-~4-j

c0)>, -C c) 4- - -. 40
>- 2> 2 > *. rCC 0

0- 0Z; 0 - 0)0-- 4-

'V.00 0 5.4- C..-0 X~ r-.. X1.- (
4-Q)Q 4 C Cv CXU- CXU-' >,

0.) "- C C0)_ C4-' CC. C /I
-V 0) 0 04- 00) 0 M a- .-C *C0 CL )

0 =A- -'V - -. .- 4-)' et34 A.-'m 4-'v LO .C-
- CC4-' .)4) 41 4-j 4.)LeA a )) -) - .4..

C E ( - - 0-- VAV.- 7VS..
.0~~L (A .J (0A 14- - a

r_ 4-' 01- C LU rC4-) rc V (A ) 04> )->) -

m) W) S. cV 0 'a S-.-'4-O. S-US- c4- s- a-)
.0- o -. o 0 S.M S.. mQ L .0 . (21 .0='cc (A

.C 4-4)() 4- - .4-) 'VM- -"( =V( >0.)>4-l >
50. C, 3:X-ulL - m-0 C E .. C3 E

S-V QC .4-) S- > - S.C-' S. E~0 s- s- s-
.. 4 - cu 'M 0a)-- a) o S. 'm e c ' 0 '0) (v '

C-=0 4-0)= ) 4- -d 4-) 5 C)' 4-& > S-. 4' -
eo C (1 a)33 'V .CL) 0)- 4- ME 0)5r M e

4... a. M-5 m 5.0. a.5. E. 5 4-uE1 W w-L-cla uC
a' em4- 0) V) to'- 0 Om a) - 0'V 0'n

0 .) - = CL S- C 0 S-) S- S4.)- ) 4 - -- a) . -M- .D 4- 4 vi E. F-

-3 > 0 'V30 ca. 00 CL 0)) *l .J
* - 50 0 ~ 5.~~~S. ). . 0~ 0 V0VUV)V/

4- ' CX ~ 'V0) 'V05- V.C)'V C.C ~ COS. CC.5. 05/



3-13

ka'
CI-

CA

C- C- =
C"~ S- -A

S. -.. WC.E~

ccw *0 j 0L cu~

-n 1.. f
S- a2- W

-- ) u - LS -C E - L

.~~~Cr Q) JC 'W J

= - L- v EU CX LA.'C
- io u.E . C CL . '

S? X

C L * LC

a) 0) 4- Ea- .0LA
S- L -

C -6-j
I .- X EV IC

.6 4 C-

VEC7,
faS



3-14

C-1C

cu

1.4I

- ~ ~ I 0;- IIIp~

a W aaI-a

-4-

M ro

I LAV -4 r mm

C * r_ 4
V) e- > m ) 0fAV

+- cuv ,;E > ~lE >, s.a

10 -C m 'o<

.- S-', - S

U,, C1 IC -- 9 ," aL

> cu W j

0 E M 10 <

l~a p

C -s S A a L -V M % o V

3: 'A1



3-15

-I C_

3: i

-C) LL 4

~~cc

- - i

3; ,- p
0-4

-

S-~ LUCL eaC

4-' 40

>4-

wU (1 UU

o .

U- 0



3-16 .

- I-

-4 W

aC W

- S- C

a~ U) .f

a) CE (

.4 ~ .-

u M
o (A 'oA 1

0 c4~ 0..
Cw LA

S - u -
oa E~ V

E

- C )J
4- 00 cu

-0 .

C CE

S-- E0 W 3
eaCC ~ -
3:~4

C 4c m

o .



3-17

WCr

ES-

ci

cu C
*~ U E'Z I-

-A vi = . 4
C)

L.4.

>~ ~ ).(

M~ 4/U ea Li

-I~ 0"0

o E

3'e E-L.

'4--

SI-

44- m. o-

Lfl 4# *4-J



:; ,J i , ; . : - -- - - - - - - -'' ' ' ' -

.4

3-18

4.0 CONCLUSION

With the interface definitions as described, the software reliability

model is able to be used in a stand alone environment or in conjunction

with the fault tolerant system reliability model. This setup is useful

for error detection. The first stage in providing fault tolerance is

to detect errors arising from the execution of the primary module. During

its execution, the module will be subjected to the interface checks provided

by the underlying system. These checks could detect the consequences

of faults in the module and hence signal an exception.

..

I

'z.

p

I-~

--

p

r

° ",

p%

p. .

.a, a.,' . ;. ,- , - .,.,,- , % ,.,,,, .- . ; . . •, . . . . . . . . , . , .



P'"

3- 19.

5.0 BIBLIOGRAPHY '

1 'nce-sor, T. anc Lee, P. A., FAULT TOLERANCE Princioles and Practice,
P-ertn ze-Ha'l :nternational, inc., EnglewooG Cliffs, New Jersey,

2. Bjurman, B. E. et a, , "CARSRA: Computer Aided Redundant System,
Reliability Analysis Programmers and User's Manual", Boeing Commercial
Airplane Company, Report Number NASA-CR-145024, August 1976.

3. "Evaluation of Reliability Moceling Tools for Acvanced Fault-Tolerant
Systems", A,'RLAB INTERFACE, A Progress Report, N ASA Langley Research

Center, Hampton, Virginia, December 1985.

4. Makam, Srinivas V., "Design Study of a Fault-Tolerant Computer System
to Execute N-Version Software", University of California at Los Angeles,
Technical Report No. CSD 821222, December 1982.

5 Ness, W.G. McCrary W.C. Bridgman, M. S., Hitt, E. F., and Kenney,
S. M., "Automated Reliability and Failure Effects Methods for Digital
Flight Control and Avionic Systems, Volume I: Evaluation", Lockheed- "
Georgia Company and Battelle Columbus Laboratories, Columbus, Ohio,
Report Number NASA-CR-166148, March 1981.

6. Prater, Shirley A., "Software Reliability Assessment Methods, Review
of Studies of Software Reliability Models", Battelle Columbus Laboratories,
Columbus, Ohio, October 1985.

7. Rose, D. M., Altschul, R. E., Manke, J. W., and Nelson, D. L., "CARE
III User's Guide", Boeing Computer Services, Seattle, Washington
(Prepared Under Contract Number NAS1-16900), January 1984.

8. Shooman, Martin L., SOFTWARE ENGINEERING Design/Reliability/Management,
McGraw-Hill Book Company, New York, 1983.

p

)I)

, > 1



4-1

TECHNICAL REPORT

on

FORMULATION OF THE SOFTWARE RELIABILITY MODEL

1.0 INTRODUCTION

hierarchical software reliability model which predicts the

reliaoility of software prior to its development is proposec. This mocel

s.all include both fault tolerant and fault intolerant software considerations.

With this model, measurement of the reliability of software uncer develop- I

ment and identification of the data to be collected to make this evaluation

snall be possible.

2.0 SOFTWARE CHARACTERISTICS I

To handle both fault tolerant and fault intolerant software,

the reliability model shall include single version software, N-version

software, decision algorithm(s), recovery block(s), and acceptance test(s). I

The software characteristics of each of these design techniques are dis-

cussed in the following sections. In addition, when trying to specify

software reliability, the principal concern in actually to describe the

ways the software can be unreliable. Software reliability may be charac- I

terized by a profile that describes the modes of failure that the software

can exhibit as a consequence of faults [DURHAM]. Therefore, the types

of faults that are related to each of these design techniques are included

in the following sections.

2.1 Single Version Software

This is a probabilistic model of deterministic or random events.

Usually, the program execution is deterministic, while the development

I



AToA

process is probabilistic. Some examples of faults that are cnaracte. stic

in single version software and must tnerefore be aczounted for are:

a. Incorrect specification
b. Misunderstood or unclear specification
c. Algorithmic error (sometimes callec a computational or

logic error)
d. Input data error
e. Program logic error
f. Output data error

2.2 N-Version Software

N-Version software is a fault-tolerant software technique wnich

imDlements, usually in parallel, two or more versions that are functionally

equivalent. These versions may be produced independently by separate

programming teams or they may be made explicitly differert through examination

and subsequent forcing of differences into the versions [KELLY]. Nevertheless,

when the alternate versions are compared, the faults should be distinguishable

[HITT84]. Some of the faults associated with N-version software include

a. Specification error
b. Performance error (due to incomplete, inconsistent,

or ambiguous specifications)
c. Non-termination error
d. Algorithmic error
e. Input data error
f. Output data error

2.3 Decision Algorithm

The decision algorithm determines what the specific output

should be. The decision algorithm may be a majority vote, a median select,

a bit-by-bit comparison (with the number of bits that are to be comparec

or are significant specified), or an average LKELLY]. Some corsicerat'ons

to be made in the software design are:

a. The type of decision algorithm used, .

b. The allowable range of discrepancy of eacn input from
all other inputs to the decision algorithm; and

c. The data sensitivity of the decision algorithm.



- '

4-3

2.4 Recovery Block

The recovery block met.od is a fault-tolerant software tecnnique

which provides alternate components which may be switched in (usually

serially) to take the place of a faulty component that has been rejected

by the acceptance test. These alternate components are cesignea inceoencently

from the main software component (the primary alternate) anc generally

only provide partial functionality of the software component, thus reducing

it to a degraded, simpler mode. Prior to entering an alternate, the

state of the process is restored to that current just before entry to

the primary alternate [RANDELL]. Some examples of faults that occur

in the software for recovery blocks include:

a. Specification error
b. Performance error
c. Non-termination error
d. Algorithmic error
e. Input data error
f. Output data error

2.4.1 Forward Recovery Block

A forward recovery block restores the system to a consistent

state by compensating for inconsistencies found in the current state.

For a single process, the forward recovery block technique requires a

detailed knowledge of the extent of damage done and a strategy for fixing

the inconsistencies [HITT86]. Therefore, for each data abstraction,

exceptions shall be specified as a response to run-time attempts to violate

its inherent invariant properties. These anticipated faults can be handled

by forward recovery block techniques [HITT84 and CRISTIAN].

2.4.2 Backward Recovery Block

Backward recovery block techniques involve restoring the system

to some previous known correct state (referred to as rollback) and restarting

the computation from that point [HITT86]. Unanticipated faults, i.e., p

design faults, can be handled by a default exception handler using automatic

backward recovery [H:TT84 and CRISTIAN].

I i



4-4

2.5 Acceptance Test

An acceptance test is a logical expression or algorithm which

checks the acceptability of the results (or input) that are generated

by a software component [RANDELL]. The faults that are associated with

an acceptance test include:

a. Specification error
b. Performance error
c. Algorithmic error
d. Input data error
e. Output data error

2.6 Rollback

The rollback recovers the input state of the software to its

condition prior to when an incorrect or faulty version was run. This

resets the software to the input state necessary to run the next version.

A rollback is used in connection with a recovery block and hybrid N-version

software systems. Faults that are characteristic of rollback are:

a. Specification error
b. Input data error
c. Output data error
d. Unrecoverable state

2.7 Roll-Forward

The roll-forward is always used in connection with a forward

recovery block. The roll-forward transfers the restored state obtained

from the forward recovery block to a forward position in the system.

The forwara position for this transfer depends upon the state for which

the forward recovery block has compensated. Faults associated with roll-

forward include:

a. Specification error
b Performance error
c. Input data error

d. Output data error



4-5

3.0 SOFTWARE INTERFACES

Software reliability is a probabilistic measure anc is defined

as the probability that a software error whicn causes ciscrepancies from

specified requirements in a specified environment coes not lead to a

failure during a specified exposure period.

3.1 Inputs

The inputs to this software reliability model are the incividual

probabilistic reliability values (or safety, evailability, or accuracy

values, if desired) for the function blocks. These values are either

obtained from the software reliability data base, estimated by the lines

of code (and the language), derived experimentally by subjecting the

function block's software to a number of test cases and counting the

failures to determine a reliability value, or from lower (detailed) level

models. The inputs should be real numbers with a range of 0.0 <

probabilistic reliability value (or safety, availability, or accuracy

value) < 1.0.

3.2 Outputs

The output of the software reliability model is the overall

probabilistic reliability value (or safety, availability, or accuracy

values, if desired) of the closed loop block diagram. The output can

also be for different levels within the hierarchical software reliability

model, ranging from simple, high level block diagrams to complex, detailed

block diagrams.

3.3 Communications

When first developed, a function block may be considered to

be highly reliable, but if the software of that function is subsequently

rarely used or tested, the confidence in that reliability value may be

?.



4-6

much lower than it would be with extensive use and testing. Two such

examples are a backup bus controller and the auto land capability on

some aircraft. (The auto land capability, on some aircraft, is checked

only while the aircraft prepares for takeoff and then not again during

the entire flight until it is actually needed for landing.)

4.0 SOFTWARE FUNCTIONS

The model is represented using control system notation for

model representation. Each software module is considered to represent

a transformation of input to output. While a signal flow graph could

be used, a simulation diagram equivalent to the flow graph has been selected.

4.1 Menu Selection

Each module can be represented by a transfer function whose

type is a unique icon. The software shall enable menu selection of the

following icons:

a. Structure Icons

* single version software
* N-version software (the number of versions must be

specified by the user)
# decision algorithm
e recovery block (the number of alternates must be 'N

specified by the user)
@ acceptance test
a rollback
# roll-forward

b. Transfer Icons .--

e forward path
# positive feedback
* negative feedback
e positive feed-forward
* negative feed-forward

It shall be possible to place these icons along a display such .

that a block diagram is formed. Each of the structure icons shall represent

a function in the software that is under development. .

-€ . , , .- , - .- . .-- -. . - .. - . ..- .. ... .--.. -.. .. . . . .. . .. .'. . . " ". ."• - -...-. -,'



4-7

r c I0

N U

P Version 2 I----- U -
Alcorithm pU P"

T U

V e r s i o n N _-_T__

Figure 1. General Format for N-Version Software

Version cceDtance
I i ~Te s t 0 -

N 0
SVersion ceotance Decision U

U2 ------ Test Algorithm T.'-

T 
U

U

Acceptance T
Fgr2N -VrinSf~r ihAcpac Tests"

Figure 2. N-Version Software with Acceptance Tests

I Version 1 - " 0
N U
P - --- V r i Decision TP - - - - V e r s i o n 2 --- --- A l o r t h -- --- - T" -

UAlgorithm P
T U

Version N T

Rollback ,

Figure 3. N-Version Software in Which Only
x Versions are Used at a Time

.S"w



9%, .I 7 . P.

4-3 ..

4.1.1 Placement Require.Tnts

The structure icons, given in Section 4.1,a, are listed as

independent entities. However, when N-version software is chosen, it

must be coupled with a decision algorithm in the general formats depicted

in Figures 1-4.

Figure 3 represents an N-version software model in which only

x of the versions are run at a time. If these x versions fail at the

decision algorithm, then the software is "rolled back" (or restored to

the original input state), and another x versions are run. This cycle

will continue until the decision algorithm passes, the software "times

out" (reaches its maximum time limit), or all of the versions have been

run [SONERIU].

Acceptance
Test

-,

0IVersion i " U "-

UU
dN ecsionT 1

P - l Version 2 . = Algorithm -"P .#

U UT .T'

SVersion N ,

Rollback

Figure 4. N-Version Software in ;Which the Outputs are
Subjected to an Acceptance Test if the
Decision Algorithm Fails [SCOTT]

When the recovery block is chosen, it should be used with an

acceptance test in a format similar to:



_ _ _ _ _ _4 - 9

I Alternate 1U
Acetac T

P I---- Alternate 2 Test PU U
T I Alternate ti

Rollback

Figure 5. General Format of a Backward Recovery Block

A er _ _____ _ 0N U
__ __ _ AcceptanceT

Tp

-~ Alternate 2_ U~Ts

Roll-Forward

Figure 6. General Format of a Forward Recovery Block



eVWV ~ ~ .~ U ~u~w 'jT ' ~W j ~~ V~W --. -. -'~ -. -i -. W WV -V' .'- - . .P, ,. ..v .w

0

4-10

p,.

A variation of the forward recovery block format might be:

I Alternate 1 AyUIN Acceptance Any T '

P -( Alternate 2 Test Process p
U 

U
T Alternate N T

Rollback

Roll-Forward

Figure 7. Alternative Format for a Forward Recovery Block

Section 4.1 lists the decision algorithm and acceptance test

independently of the N-version software and recovery blocks to allow

for the variations in the format. This permits the decision algorithm

and acceptance test to be used independently, as well as in conjunction

with their respective pairs [(N-version software and decision algorithm)

and (recovery block and acceptance test)]. Keeping the decision algorithm

and acceptance test as separate entities requires that each N-version

software, decision algorithm, recovery block, and acceptance test module

-. have individual reliability values. This should improve the accuracy

of the transfer functions for this portion of the diagram since it will

accommodate variations in the implementation of these concepts. (Reference

Section 6.0).

4.2 Federal Aviation Administration (FAA)
Function Criticality Categories

The system functions shall be classified as critical, essential,

or non-essential, according to the effects of malfunctions or design

errors. The categories are defined as:

- ..- - .. .-. -.-...-.. --.-.-.....-.. .** V ** .~ -. -. -. -. *s.



4-11

a. Critical - Functions for which the occurrence of any
failure condition or design error would
prevent the continued safe flight and
landing of the aircraft.

b. Essential - Functions for which the occurrence of any
failure condition or design error would
reduce the capability of the aircraft or
the ability of the crew to cope with adverse
operating conditions.

c. Non-Essential - Functions for which failures or design
errors could not significantly degrade S

aircraft capability or crew ability.

The most critical function of a system will determine the category of

the whole system unless that system has been partitioned into elements

having different categories. Correspondingly, the software levels used

throughout this report are Level 1, Level 2, and Level 3. The software

level required for certification of functions is based upon the applicable

criticality category. Level 1 is associated with the critical category,

Level 2 with the essential category, and Level 3 with the non-essential

category [RTCA].

4.3 Function Block Reliability

It shall be possible to determine the transfer function ("reliability")

for the function blocks in the block diagram through the use of a software

reliability model which addresses dynamic measurements. These transfer

functions are often available through previous research and will consequently

be furnished in the software reliability data base. (Reference Subtask

4.4.4, Define Data Required for the Software Reliability Data Base and

Set Up the Data Base). '

Furthermore, the FAA criticality categories will be supplied

for each of the transfer functions to identify which of the function

blocks or parameters strongly effect the overall system criticality.

Any variation in the criticality of these function blocks would have

a dramatic effect on the overall criticality estimate and its associated
V%,

confidence level.

, , - . ...- ... m



V,

4.3.1 Detailed Function Blocks .- ,
"

This hierarchical software reliability model may be used with %J*

varying levels of detail [and consequently will provide varying degrees _

of accuracy (Reference Section 6.1.)]. Figure 8 gives a simple example

of a possible situation. In this example, reliability values (probability
of the software functioning correctly) may be substituted for each function

block. This will permit the determination of the overall system reliability.

(Re-ference Section 4.5.) However, this is a very high level model, and
as such, the accuracy of the reliability values tend to be not as good

as might be desired. Each of the software design techniques (single

version software, N-version software, decision algorithm, recovery block,

and acceptance test) can actually be broken down into more detailed function

blocks, dependent upon the possible faults associated with the software.

These faults were discussed in Sections 2a through 2.7.

A detailed diagram for the single version software function

rblock and the decision algorithm function block are given in Figure 9.

With reference to Sections 2.1 and 2.3, Tables I and 2, respectively,

Slshow the association between the identified fauts and the portion of

the diagram in Figure 2 in which they would occur. Theore, the reliability

of each of the detailed function blocks in Figure 8 is a probability

of success for that portion [or 1.0 - ( the probability that the associated

fault(s) listed in Table 1 or 2 for the detailed function block will

occur)].

4.3.2 Function Block States

The four possible states for any of the function blocks (detailed

*or not) are:

a. the function block fails (an error is detected in the
function block) and it is corrupt (contains one or more
error);

b. the function block passes, yet it is corrupt;
c. the function block fails and it is error free; and
d. the function block passes and it is error free.

.5..

, '' - S S' * -J4~ *. * '



.-13 "

"-d.

r ,.

0V

Sinlever-sion 1- Alernate 1 Ace-U
p es nDeci Sion tance

___VerionVersion 2] -'A1go r- Atrae2 P~Ts
U Software Tthmt
T Version '17 FA1rnae i T

IFigurele8. Sip eBlcki agran Example'-:

N nptInput OutputUr
P Integrity Algorithm Format p
U 0 r
T T

Input/
Output

Integrity

Figure 9. Detailed Diagram for the Single Version Software
Function Block or the Decision Algorithm Function
Block

•p

p):

--p

Io



4-14 r.

Detailec Fnc'_ion Blocks

:nput cut:)Ut input/
Valiity Integrity Iloorithm Fo-7at Output

Faul ts _ntegrity

incorrect
Specification x x x x X

Misunderstood
or Unclear X X X X X

Speci fi cation }

4T

Algorithmi c
Error x X x x x

Input Data
Error X X

Program
Logic Error X X X x x

Output Data
Error

Table 1. Correlation of Faults with the Detailed Portions

of the Single Version Software Function Block

% 
-2

-' .. . . . ... . . ... ... ................. . .. ,;......., ....:...:.,- ... :-:: .- ",_ P:i



4-j5 '

6 "S

Detailed Function Blocks

Inout Input Output Iflput/
-Val icity .ntegrity Aloori hm Fo rma t O ut put

Faults integrity

K Inout Rae
Error xX

XF

Error X X X x x

Table 2. Correlation of Faults with the Detailed Portions
of the Decision Algorithm Function Block



4-16

mathematical truth table for tese states is given in Table 3.

Error Error Error
Exists Detectec Corrected Rei- Avail-

State in tne in the in the Safe able able
Function Function Funtion
Block Block Block "

a T T T T T T
I *

a T TF T T F

b T F N/A F F F*

c F T N/A T F F

d F F N/A T T T

N/A = not applicable
• = True or False (the common interpretation is given)

Table 3. Truth Table of Function Block States

N ~ ~. . N N' . U V N . . . . . . . . . . . . . . .



S

4-17

4.4 Software Reliability Data Base

A software reliability data base shall be established to store

reliability values for the various function blocks identified in the

software reliability model. These software reliability values will be

collected from research performed and documented in technical reports.

The use of these reliability values will provide a more accurate estimation

of the software reliability and the confidence associated with this estimate.

4.5 System Reliability

The function blocks will each have an associated transfer function

("reliability"). The overall system reliability is determined via block •

diagram reduction techniques, thus giving the overall system transfer

function.

In this software reliability model, the signal-flow diagram

reduction technique is used to determine the overall system transfer "

function ("reliability"). The signal-flow diagram is useful in analyzing

multiple-loop feedback systems and in determining the effect of a particular

element or parameter in an overall feedback system, whereas the block

diagram is useful in the design and analysis of sections of a feedback •

system. Block diagram reduction techniques become tedious and time consuming

as the number of feedback paths increases. To solve complex problems,

it is much simpler to use the theorems and properties of signal-flow

graphs.

The equations used in this analysis follow S. J. Mason's theorems

on the properties of signal-flow graphs. The general expression for

the (closed loop) system transfer function using the signal-flow diagram

reduction technique is given by 4

Reliability - K K K

S-. 2

~3



, .A . P~ ~' .. - 'r:~~J V f~W. ~ ''

Z

4-18

1'4

wh.re

A = -ZL l + L2 - fL 3 + + (-1) n -Ln,
LI = the gain of each closed loop in the graph,

L2 = the product of the loop gains of any two non-touching 
16

closed loops,

L3  the product of the loop gains of any three non-touching
closed loops,

Ln = the product of the loop gains of any n non-touching
closed loops,

GK = the gain of the Kth forward path,

AK 
= the value of L for that part of the graph not touching the

Kth forward path [SHINNERS].

The transfer function for N-version software and recovery blocks

are dependent upon the number of versions or alternates (n). For N-version

software, the transfer function is .,

Cn

with

n = the number of versions in the N-version software;

C(n,r) = the number of r combinations of an n element set;

Cn = C(n,z);

the product of reliabilities of the i-th combination
required for success;

i = 1, 2, 3 .... Cn;

z : [(n/2) + 1] if n is an even number; and

z [(n + 1)/21 if n is an odd number.

For a recovery block, the transfer function is

I

G1 + (1 - G )G2  + (I - Gj)(1 G2 )G3  +

with Gi the reliability value for alternate i and
Ii = 1, 2, 3....n. .'Z

I



4-19

The reliability values (transfer functions) for the hybrid

N-version software and the recovery block will vary if not all of the

n versions or n alternates are used. The above equations will give a

higher reliability value than the actual situation in these cases. Sections

6.1.1 and 6.1.2 discuss the accuracy of the reliability values for the

A-version software and recovery block and how they can be calculated

to reflect the actual situation. (See Appendices I and II for some examples

with these equations).

Althoucn the transfer function for most of the function blocks is

the reliability value, one exception to this is with rollback or any

7eecback block. For any feedback path, the transfer function of the

equivalent block in the path is (1.0 - reliability value). (See Appendix

_i: for a further explanation and proof). The second exception is with

feed-forwarc paths. The transfer function of the equivalent block in

a feed-forward path (for example, roll-forward) is (1.0 - reliability

value). (Refer to Appendix IV for additional information.)

4.5.1 Simple, High Level Model Example

For a sample problem involving a simple, high level model,

the example given in Figure 8 will be used. The Single Version Software

will be a commonly used algorithm or process, and therefore, it will

have a high reliability which is well documented and stored in the software

reliability data base. For this example, the reliability will be 0.9991.

The N-Version Software will have three indepedent versions,

running in parallel. This is a common form of N-Version Software, but

not one with the highest reliability. Through the user's tests, it is

determined that this function block will have a reliability of C.994.

The Decision Algorithm will take an average of the outputs

from the N-Version Software, excluding any version which does not meet

the timing constraints. This type of Decision Algorithm has a high reli-

ability since it does not have a range check or any other source for

determining the validity of the output. This Decision Algorithm will

not eliminate any erroneous outputs and will not detect the occurrence

r4,



4-20

of correlated faults. The decision algorithm is simple (and consequently

highly reliable), but it is not al;ays the most desirable since its simpli-

city detracts from its capability of detecting errors. For this example,

it is assumed that the reliability of the Decision Algorithm is 0.988.

The Recovery Block is a backward recovery block with a primary

alternate ana two additional, extremely simplified alternates Tne Recovery

Block is of a common form and its reliability can be obtained from the

software reliability data base. For this example, it will have a reliability

value of 0.97.

The Acceptance Test is an output format check. This is a simplistic

algorithm whicn is commonly usea in various models. The reliability,

as determined from the software reliability data base, will be 0.9997,

Finally, the Rollback recovers the input state of the software

to its condition upon entry to the Recovery Block. This is a retrieval

of the data from its memory location. The reliability of this common

form of Rollback will be assumed to be available in the software reliability

data base. For this example, the reliability is 0.9999. This makes

the transfer function for the Rollback equal to (1.0 - 0.9999). (Reference

/ the final paragraph in Section 4.5.)

Hence, for this example,

L1 = (0.97) x (0.9997) x (+1.0 - 0.9999) = 0.0000969709

L2 through Ln = 0

G1 = (0.9991) x (0.994) x (0.988) x (0.97) x (0.9997)
0.951467

G2 through GK 0

1j

= 1 - (+0.0000969709) = 0.99990302

Therefore,

Reliability = (0.951467) x (1) 0951559

Reliability = 0.95.

w 
•

. . . . . . . . ~~ ~~. . . ...- ° ,. ....



4-21 a,

,,;

4.5.2 Complex, High Level Model Example

The complex, high level model example will be as shown in Figure

10. Block (1) is a Sinole version Sofzware block. For this example,

it will be a simple algorithm witn a -eliability value of 0.998.
o4.°

Block (2) is N-Version Software with nine independent versions

in which only three versions are run at a time. (This type of N-Version .a

Software was shown in Fioure 3). For this example, it is assumed that -a

the reliability value for the N-Version Software is 0.999. S

Block (3) is the Decision Algorithm for the N-Version Software.

In this example, the Decision Algorithm will be a median select with

a reliaoility value of 0.983.

Block (4) is an Acceptance Test which will check that the range

of the output from the Decision Algorithm is correct. if the Decision

Algbrithm failed, then the software will Rollback after the Acceptance

Test. Similarly, if the Acceptance Test fails, then the software will

Rollback to the N-Version Software. Tie input to the Acceptance Test S

will be stored to accommodate for thi' Rollback from the Recovery Block.

For this example, the reliability value for the Acceptance Test will .-.

be 0.992. ""

Block (5) is a Recovery Block of the common form with a primary

alternate and two additional alternates. For this example, the reliability

value of the Recovery Block will be 0.976.

Block (6) is the Acceptance Test for the Recovery Block. In

this example, it is assumed that the reliability value for this Acceptance

Test is 0.995.

The Rollback for the Backward Recovery Block is given in block

(7). This is a retrieval of the data that was stored prior to entry

into Acceptance Test #1. For this example, the reliability value for

this Rollback is 0.996. Thus, the transfer function for this block is

(1.0 -0.996).
• , •oa'.•

The Rollback for the N-Version Software is given in block (8).

For this example, the reliability value is 0.997. Consequently, the

transfer function is (1.0 - 0.997).

, 1



4-22

'4,

9 6

Rol Iback

(7)
.998 .999 .932 .92 .976 .9

() i (2) (3) (4) (6) (5) T

.997
Rollback ,.

(8)
.95

A

(9)

(1) Single Version Software
(2) N-Version Software
(3) Decision Algorithm
(4) Acceptance Test #1
(5) Recovery Block
(6) Acceptance Test #2
(7) Rollback #1 -- Backward Recovery Block
(8) Rollback #2 -- N-Version Software in Which

Only x Versions are Used at a Time
(9) Acceptance Test #3

Figure 10. Complex, High Level Model Example

I-I

. ... .4.-.. °o ° °

,~~........ ,-.-..,-.-...., . . "" ..- ," "..-.'',.-"" .- '""""".. . .



Finally, block (9) is an Acceptance Test which checks the final

output against the input. For this example, Acceptance Test 7-3 will

have a reliability value of 0.95, giving a transfer funct-4on of (1.0

,20.95).

Hence, for this example,

Closed Loop 1 r (0.999) x (0.983) x (0.992) x (1.0 0.997)

= 0.0029225

Closed Loop 2 = (0.992) x (0.976) x (0.995) x (1.0 - 0.996)

= 0.0038534

Closed Loop 3 = (0.998) x (0.999) x (0.983) x (0.992) x
(0.976) x (0.995) x (1.0 0.95)

= 0.0472068

LI = (Closed Loop 1) + (Closed Loop 2) +

(Closed Loop 3)

= 0.0029225 + 0.0038534 + 0.0472068

= 0.0539827

L2 through Ln =0

G1 = (0.998) x (0.999) x (0.983) x (0.992) x (0.976) x (0.995)

= 0.944135

G2 through GK =0

LI = 1

= I- (0.0539P27) = C.9460171

Therefore,

Reliability (0.94a135) x (1) - 0.9980103
(0.9460173)

Reliability = 0.998.



d-24

4.5.3 Simple, Detailed Level Model Example

An example of a simple, detailed level model is given in

Ficure 9. For this example, the structure icons would all be sinole

version software and the transfer icons would be either forward path

or positive feedback (Reference Section 4.1.). Hence, an equivalent

block diagram for this detailed block diagram is given in Figure 11.

In Figure 11, block (1) is a Single Version Software block

which checks the input set. This is a common process, so the reliability

value will be assumed to be available in the software reliability data

base. For this example, the reliability value for block (1) is assumec

to be 0.98.

Block (2), a Single Version Software block, will represent

an inDut integrity check. It will be assumed that this algorithm is common

and can consequently be found in the software reliability data base.

For this example, the reliability value will be 0.97.

Block (3) is a Single Version Software block which performs

an algorithm. For this example, the algorithm will be a simple one.

Therefore, the reliability value for this transfer block will be assumed

to be 0.992.

Block (4) will represent an output format check, performed

by a Single Version Software block. For this example, the reliability

value for this Single Version Software will be 0.996.

The final Single Version Software block, block (5), will be

used to perform an input/output integrity check in which the output is checked against

the input to verify the integrity of the input data. For this example,

the reliability value for block (5) will be 0.964. Hence, the transfer

function for this block.will be (1 0 - 0.964).

Thus, for this example,

Ll = (0.98) x (0.97) x (0.992) x (0.996) x (1.0 " 0.964)

0 0033812

p."z-

• d . . _ . . . - .. , . . ... . . .. .-, . . . . . . , . . -. . .. .-. .. - ... . . . . .. -. . . -. , . -. . .. . , -. , .



4-25

"i,

* I- ing"
N Single Single Single Single U
p -- Version Version Version V'- Version

U Software Software Software Software P

T U

(1) (2) (3) (4) T

. Single

Version __ _ _ _ _

Software

~(5)-

Figure 11. Equivalent Diagram Indicating the Structure Icons
to be Used in the Detailed Diagram for a Single
Version Software Function Block



L2 through Ln = 0

GI  = (0.98) x (0.97) x (0.992) x (0.996)

= 0,9392232 %

G2 through GK 0

= 1 - (0.033812) = 0.966188

Therefore,

Reliability = (0.9392222) x (1) = 0.972C916
(0.966188)

Reliability 0.97.

4.6 Safety

Safety is concerned with the state in which the function block

fails (an error is detected), but the function block is error free.

Although a function block is considered to be unsafe when the system

is unreliable, safety also covers this extra state, Hence,

safety [(the probability that an error exists and it is

detected) + (the probability that no error exists)]

or

safety [1 (the probability that an error exists and it
is not detected)]

while reliability : [(the probability that an error exists
and it is detected) + 1:ne probability
that no error exist: arc no e-ror is
detected)]

or

relidbility I - [(the probability that an error exists,
but the error is not aetected) + (the proba-
bility that no error exists, but an error

is detected)]

Therefore, safety _ reliability. 2



PS 4-27

Actually, the software reliability mocel can be used to determine

the safety of the high level models. instead of using reliability values

for each function block, in the determination of the overall transfer

function, if the safety value for each of the runction blocks is used

in the calculations, the resultant value will be the safety of the overall

system.

4.7 Availability

As wi:n reliaoility an safety, availacility can be determined

throuch the use of the software reliability mocel. To do so, the availability

values shoulc be usec for each function block in tie determination of

the overall transfer function. By using availability values instead

of reliability values, the resultant value will be the availability of

the overall system.

The availability values are determinec as follows:

availability [(the probability that an error exists, it is
detected, and it is corrected) + (the proba-
bility that no error exists and no error is
detected)]

or

availability 1I - [(the probability that an error exists,
it is detected, but it is not corrected) + (the
probability that an error exists and no error
is detected) + (the probability that no error
exists and an error is detected)]}

Therefore, 0 _ availability < 1.0. By comparson to reliability

and safety, availability < reliability < safety.

NF



4-28

5.0 TIMING CONSTRAINTS

If a software component should execute in 1 msec., a time-

could detect software faults that cause the execution time to exceed

1 msec. Many of the reliaoilitY mocel's timing constraints deal wi,,th

the fault tolerant portions wnere the en:tre process (fault Cetecton,

damage assessment, recovery, ana fault treatment) must take place fast

enoucn to satis'y real-time requirements. "No matter which fault tolerant

sofzare methocd is usec, real-time systeris must arrive at a consistently

corr.ect solution within the time frame determined by the control system

dynamics. Failure can occur cue to excessively long resconse times,

e.g., tne system goes unstable since the hard ceadlines for code execution

are mssed. "H:T '&6'

6.0 ACCURACY CONSTRAINTS

The accuracy and reliability of the N-version software decision

* algorithm, recovery block, and acceptance test are deoendent upon the

way in which these concepts are implemented. For example, N-version

software may be implemented as:

a. two independent versions
b. three indpendent versions
c. more than three independent versions
c. an N-version softare model in which only x versions

are run at a time, and if these versions fail for some p

reason, then x or less of the remaining (N-x) versions
are run. (This is deoictec in Figure 3

e. an N-Version model in wnicn a combination of x versions
are run, and if these x versions 4a~l for some reason,
a dife-ert combination of x versions is run, and so on.
(NOTE. This concept is different from item d, above,
because this implernentation groups different combinations
of x versions item d, however, uses x versions, and if
they fa, , the x versions are in essence thrown out dnd
a completely new group of x versions are used; not a new
combination of x versions, but x completely new versions.)

Some of the differences which afect the reliability and accuracy

of the decision algorithm are:

%I



a. 71a~or z vote;
b. -ecan see--::;

c. ave-ace; and
a. the aecision alcoritnm only considers those values which ";"

are in certain rance and then it uses one of the methods
(a, b, or c), above.

The recovery bloc,'s accuracy and reliability depenc on the

following items (to name a few):

a. tackward
i . how far it rolls back; and .

tre numoer of altern a-es ava laoe.
b. forward

i.) how far it rolls forward; an-
i4  te accurac/ of the value(s) assianed prior to

the roll.

Some of the concepts that affect the accuracy and reliability

of the acreptance test depend on:

a. the range of the values accepted;
b. the rate of change determination for the variables; and
c. the format of the data.

Needless to say, all of these implementation characteristics

must be considered and will affect the accuracy of the reliability values.

Sections 4.1 and 4.1.1 discuss how the software reliability model is

set up to accommodate the implementation variations. With this software

reliability model design, the accuracy is improved since these considerations .

can be taken into account in the assignment of reliability values (or

accuracy -- see Sections 6.1 and 5.1.1 through 6.1.3 -- or safety or

availability values) to t e function blocks.

6.1 Accuracy

The accuracy of the software reliability model will depend

upon the accuracy of the individual values that are used as the transfer

functions for each of the function blocks. In most cases, the accuracy

of a model with cetaileuc function blocks will be better than tie high

". : " -2 " .. . , , -" " " "" "- ,- ". . . . . - . . ,- ' " " . - .. . - - "



V.-QVIIVV2 V;W. W

4-30

level soft-ware rel labili tiv mocel since tne accuracy of the individual

transfer functions will be imorovec (Relerence Secti.on 4.3.1.).

7he accuracy of the re,,aoility values that are usec for tne

funct~on blocks' transfer func:ions will depend upon the method use,:

to obtain such values. ~fthe values are obtainea from the softqare

* reliaollity data ba se, then tfle accuracy of these values are inoicatec

* in the technical reoorts for tne research methoo that deterninec the

values. I- thie valu;es are ootainec through the use of a different so-Fare

relia:)iiity mocel, tnen the accuracy is dependent on the typoe o-F moce7

used . Reqarcl ess , a ::-racj val ues can be ontai4 ec: for any arc al

o-: tie transf1er fun-jc:t ns , anc tne-eore , an acc- ,;cj -;or tie 3ve -a

softarerelizilt~ ale can be calculated.

6.1.1 Accuracy of the Hybrid N-Version Software

The accuracy of the hybrid N-version software reliaco-liTY' value

* (or safety or availability values) depends upon the numoer of versions

* that are actually used. (Reference Figure 3 for an example of a hybrid
N-version software.) Usually, ifthe software isrnadol fthe

n versions are used, then the reliability value (or safety or availabi lity

values) has been overrated by considering the additional (n-f) versions

in the calculation of the transfer function for the hybrid N-version

so" tqa-e . Certa i nly, if it is known that only y of the n versions are

actually being used, then the ca'cilation of the transfer function for

*,-,e N-version software snoula only include those y versions. (See Ap~enc~x

Examole 3, fc- a demonstration of this accuracy effect.)

N, 6.1.2 Accuracy of the Recovery Block

The recovery block, by definition, consists of n alternates

Of V~ese n a'ternates, only one is run at a time, and only if that alternate
*fa''s will the software rollback and run the next alternate. Hence,

''ess than tne n alternates are actually used, the reliability (or
safety or availability) of the recovery block will generally decrease.

*Firttier-nore, this decrease in the recovery blo s ansfer function



4-31

(reliabil4':y, safety, or avai laility value) wfil', cause a cecrea-se 41n

the overall1 software rel iaoil ity val.ue (or sa-:e,-i or ava,<a<': vae ,e

calculatec with the software reliaoil ity moce" (See ':2e-c~x -o

some recovery block calculati4ons that addr-ess the e~fec-t on azzur-Ac,/

wren fewer z:narn the n alternat.es are actuall/ use,:.)

6.1.3 Accuracy Example for the Software Reliability Model

To c e o ns t ra te th e s e ofF tie s oftw a re r elia i 4 t- -c r

an aczuracy :3 --,Ia-4on, tne si~mo~e block d~agram;r snowr. 4n giure zarc

the examo'e in Section 4.5.1 w41l be used. The first ste: 4n tnis cater-

7,inat on is to ass-cr accuracy values to each of tre bloc."s. F,- tn -s

exa27:,e, :re follocwinq values w~l, be used:

Accuracy Transfer
Fujncti'on Block Value Functi on

S'ngle Version Software + 0.0002 0.9998
N-Version Software + 0.001 0.999
Decis',cn A'oorithm +0.003. 0.997

IRecovery BlOCK + 0.005 0.995
Acceptance Test +0.0001 0.9999
Rollback + O.OOCOS 0.00005

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __+

Table 4. Accuracy Values for the Simple Block Diagram Egample

*ese a:curazy vaujes reflect the accuracy of th e re abt., 'va'es -

*-a are ujsc in tie simple, hign level mocel exa-cle.

Cc.osite of the software reliabillt! mocel calculators, t. e

trars'e- f~rct'cns for the blocks are (1.0 - aocuracv value 1, ecect

'- ''ac , rol-or wa r d, t ne e-,u iv aIe nt' b ' 3c - wit1i a f e e z1aCc~ IoD

or the vral en* block wi th-n a feed-forwa-c cat". , wr 7: use '.'e a 'sol ue

sa' -,e o" tne accuracy value. Tn'e res:)ect-,ve trans'e- f,.r.flcors are l'stec

-n Table 4



4-32

Hence, for this example,

LV = (0,995) x (0.9999) x (0.00005) 0,C000097

L2 Chrouah L, = C

Gi = (0.9998) x (0.999) x (0.997) x (0.995) x (".9999)
= (0.9907257)

G2 througn GK = 0

-i= 1

= 1 - 0.0CC0.97 = C.9999503

c,racv , (0.9907257) x (1)

(0.9999903)

= 1 - 0.99077491 + 0.0092251

Accuracy = + 0.00923.

7.0 RESPONSE TO UNDESIRED EVENTS

The software reliability model cescribed herein assumes independence

between the function blocks This model neglects the existence of:

a. multiole faults wnich produce dissimilar outputs but dre
manifested by the same input conditions, or

b. related software design faults causing identical incorrect
outputs.

Te eos that are mani'estec by these faults a-e known as coincident

e-ors ar" cause a e .racat.ocn In tne reliability (or safety or availability).

Tp eore, to improve the accuracy of tre software reliability model,

t~ie ,o'nhc(ent err5 must be considered, This miqht be done with dn

and lyS'S smar to tnat suggested by Dave E. Ecknardt, Jr and Larry

0. Lee. The analysis makes tre assumptions tlha t .) the input series

X, X2 ..... .s stationary anc inceDenCent anc (2) the versions of software

. comonents a-e designed indeoencently r'7KHARD7.

• " ' .'- '- -' . . .. -- . , -- - - .- .-. ',. . , ~ ' k. '. . ) , -k . Xk 1. ,: ' .X ).. ,,'& A"



,L

When evaluatino tne ;-ccabiiit/ of coincident errors, the area

of concern is the N-verscon sof:.aare. This anaysis is interested in

the probability that z or more of the functions fail a: the same time,

with z = (n/2) if n is even ana z = 1)/2 if n is odd. The following

analysis will give a conservative esima:e (maximum possible) of the

probability of coincident errors for the N-version sofwaare. This value

might be subtracted from the transfer function of the N-version software

block to produce a conservative value (minimum) 3f the -eliaoility (or

safety or availability) of the N-version softvare and consecuently a

conservative estimate (minimum) of the overall software re7iatility value

(or safety or availability value).

The following equation gives the maximum probability of coincident

errors (E).

E = (z/ - GL) (1 - GL)z+1

(z+2) (I - GL~z 2
+ . (n) (1 -GL/n

with n = the number of versions in the N-version software;

Gi = the reliability (or safety or availability) value for

version i;

i = 1, 2 .... n;

GL the largest reliability (or safety or availability) value
among the group of r versions being evaluated;

z = (n/2) if n is an even number;

z = L(n + 1)/2] if n is an odd number;

r) = the number of r combinations of an n element set; and(n .
r = the actual r combinations of (1 - Gi) values for the

different versions in an n element set of versions.

(See Appendix I for some examples which consider the effect of coincident
errors.)

8.0 ASSUMPTIONS

Tle assumptions that are frequently made with the various software

bec elow, along with the reasons for such assumptions.

- -loccally grouped below the corresponding software



Z~~~ --r -r

4-34

to benefit the reader. In the development of this software reliability

model, it is assumed that the software of the function blocks will have

complete probabilistic independence. However, Section 7.0 tries to accommodate -

for any ill effects that result from this basic assumption.

Sinole Version Software

a. Errors are not always corrected when detected and errors

may be spawned when correcting errors.

b. The time to remove a failure is considered to be nealicible
and is igncred.

c. Inputs which exercise the program are randomly selected.

d. The failure rate at any time is proportional to the current 5

number of errors remaining in the program [PRATER].

N-Version Software

a. To benefit from increased reliability, N-version assumes
the probability of a common fault among the versions isextremely low.

b. When a fault is determined, the damage incurred is limited
to the encapsulation of the individual software versions
and the overall function that the versions are performing.

Decision ilori thm

a. For a majority vote, it is assumed that damage will be
limi ted to the versions in the minority when the decision
algorithm is invoked.

b. it is possible for a majority vote to yield an incorrect
result if a majority of the inputs are incorrect.

Recovery Block

a. Faults will manifest themselves within a recovery region. S

b. The alternate versions of software components are independent
such that correlated faults are either eliminated or reduced
to an acceptably low level,

c. The n alternate blocks are independent from the acceptance
tests [HITT84].

Acceptance Test

a. The acceptance test will recognize the faults.
.- -

~~....... ..... . . .......................... • • -. " ..- "•°..-"".. .



'WV TV TVV 'VYW V1 W YAY .

A, 4-35

9.0 REFERENCES

[AVLA86] Avizienis, A. ana Laprie, J. C., "Dependable Computing:
From Concepts to Design Diversity", to be published in the
IEEE Proceedings.

[CRISTIAN7 Cristian, F., "Exception Handling and Software Fault Tolerance",
p. IEEE Transactions on Computers, Volume C-31, Number 6, June

1982.

LDURHAM] Durham, Ivor and Shaw, Mary, "Specifying Reliability as
a Software Attribute", Carnegie-Mellon Unive-sity, Report
Number CMU-CS-82-148, December 6, 1982.

[ECKHARDT] Eckhardt, Dave E. Jr. and Lee, Larry D., "A Theoretical
Basis for the Analysis of Redundant Software Subject to
Coincident Errors", NASA Langley Research Center, NASA
Technical Memorandum 86369, January 1985.

[HITT86] Hitt, Ellis F., "Software Fault-Tolerance (Task D-1),
Battelle Columbus Division, Columbus, Ohio, January 9, 1986,
pp. 1, 5-7, and 20-25.

[HITT84] Hitt, Ellis F., Webb, Jeffrey J., Bridgman, Michael S.,
"Comparative Analysis of Fault-Tolerant Software Design
Techniques", Prepared Under Contract Number NAS1-17412,
February 15, 1984, pp. 11-17, 30-35, 37, 40-44, and 68-90.

[KELLY] Kelly, John P.J., "Specification of Fault-Tolerant Multi-

version Software: Experimental Studies of a Design Diversity
Approach", UCLA Technical Report, 1982.

[MCGARRY] McGarry, Frank, Page, Jerry, Eslinger, Suellen, Church,
Victor, and Merwarth, Phillip, Recommended Approach to Software
Development, National Aeronautics and Space Administration,
Goddard Space Flight Center, Greenbelt, Maryland, Report
Number SEL-81-205, April 1983.

[PRATER] Prater, Shirley A., "Software Reliability Assessment Methods,

Review of Studies of Software Reliability Models", Battelle
Columbus Division, Columbus, Ohio, October 1985.

[RANDELL] Randell, B., "System Structure for Software Fault Tolerance",
IEEE Transactions on Software Engineering, Volume SE-I,
Number 2, June 1975.

[RTCA] Software Considerations in Airborne Systems and Equipment
Certification, Radio Technical Commission for Aeronautics,
Report Number RTCA/DO-178A, March 22, 1985, pp. 13, 14,
20, and 42.

. . . . . . . . N,*--- .. N N ~** * *

%. . . .



4-36

[SCOTT] Scott, Roderick Keith, "Data Domain Modeling of Fault-Tolerant
Software Reliability", North Carolina State University,
Raleigh, North Carolina, 1983, pp. 22-27, 37-39, and 42-45.

[SHINNERS] Shinners, Stanley M., Modern Control System Theory and
AoDlication, Addison-Wesley Publishing Company, Inc., U.S.A.,
1978, pp. 46-56.

[SHOOMAN] Shooman, Martin L., SOFTWARE ENGINEERING Desiqn/Reliability/
Manacement, McGraw-Hill Book Company, New York, 1983,
pp. 297-300 and 416-425.

[SONERrU] Soneriu, M.D., "A Methodology for the Design and Analysis
of Fault-Tolerant Operating Systems", PhD Dissertation,
Illinois Institute of Technology, Chicago, Illinois, 1981.

* .[TOUL76] "Definition of the Pilot-Project on Computer System Dependability",
Joint Report UPS-LSI/ONE RA-CERT/CNRS-LAAS, Toulouse, France,

% January 1976 (in French),

7 V'

a.%

a•



4- 3-/

APPENDIX I

N-VERSION SOFTWARE CALCULATIONS

The transfer function for N-version software is given by the

following equation:

Cn1 - r (I-xi ) '[}

i=i

with n = the number of versions in the N-version so;'ware;

Cn = C(n,z) = the number of z combinations of the n
element set;

i the product of reliabilities of the i-th combination
required for success; and

i 1 1, 2 ..... Cn.

z = [(n/2) + 1] if n is an even number

z = [(n+l)!2] if n is an odd number

The following examples utilize this equation.

rxarnple 1

Using the block diagram shown in Figure 1, a system with N-version

software whose outputs go into a decision algorithm will be analyzed.

For this example, the N-version software will consist of five versions.

The reliability values for the five versions and the decision algorithm

are given in Table 5.

Software Component Reliability Value

Version 1 0.77
Version 2 0.82
Version 3 0.65
Version 4 0.91
Version 5 0.89

Decision Algorithm 0.997

Table 5. Reliability Values for the Software Components
in the Figure that Represents the General

Format for N-Version Software -'

J.



J..
4- 33 .

To determine the overall software reliability value for this

block diagram, the transfer function for the N-version software, which

is dependent upon the number of versions (in this example n = 5), must

first be determined. Hence, the transfer function for the N-version

software (INVS) is ,

NVS [ - (1-GIG 2G3)(1-GIG 2G4 )(1-GIG 2G5 )(1-GIG 3 G4 )(1-G IG3G5 ) x

(1-GIG 4G5 )(I-G 2 G3G 4 )(1-G 2G3G5 )(1-G 2G4G5 )(1-G 3G4G5 )]-

By substiut4ing in the appropriate reliability values,

NVS = [1-(0.77)(0.82)(0.65)][1-(0,77)(0.82)(0.91)] x

[1-(0.77)(0.82)(0.89)][l-(0.77)(0.65)(0.91)] x

[1-(0.77)(0.65)(0.89)][1-(0.77)(0.91)(0.89)] x

[i-(0.82)(0.65)(0.91)][1-(0.F2)(0.65)(0.89)] x

[1-(0.82)(0.91)(0.89)][1-(0,65)(0,91)(0.89)]

[1 (1-0.41041)(1-0.574574)(1-0.561946)(1-0.455455) x

(1-0.445445)(1-0.623623)(1-0.48503)(1-0.47437) x

(1-0 .664118)( 1-0. 526435)]

[1 - (0.58959)(0.425426)(0.438054)(0.544545)(0.554555) x

(0.376377)(0.51497)(0.52563)(0.335882)(0.473565)]

1 - 0.0005377 = 0.9994623

NVS : 0.99946

By applying the software reliability model in Section 4.5,

LI through Ln 0
GI = (0.99946) x (0.997) = 0.9964616

G2 through GK =0

Al =1I- '

A 1

, 'i

'. ' .' .W "- " , -"- " " .,' ." ". .". -" " "," ". -" " • ". ." " .,. -' ' '. -.' ' '- .-" " '. -.' ' '- ..- ' .--." .' ..' , " . '. . " I '



4-39

Therefore,

Reliability = (0.99646i6) x (1) = 0.996 i2616

(1)

Reliability = 0.996.

The probability of coincident errors (E) should be determined

and subtracted from the transfer function for the N-version software

to improve the accuracy of the reliability value of the N-version software

and the accuracy of the overall software reliability value. (Reference

Section 7.0.) For this example,

E = * (1-GL + (4> (1-GL)4 + (5*(1-GL) ~

The groups for ( would be

G1G2G3, GIG 2G4 , GIG 2G5 , G1G3G4 , G!G3G5, G1G4G5 , G2G3G4 ,

G2G3G5, G2G4G5, and G3G4G5,

with respective GL values being

G2 , G4 , G5 , G4 , G5 , G4 , G4 , G5 , G4, and G4 .
N,

',

The GL values can be grouped as G2 + 6 x G4 + 3 x G5.

The groups for (4) would be

GIG 2G3G4 , GIG 2G3G5, GIG 2G4G5, GIG 3G4G5, and G2G3G4G5 ,

with the respective GL values being G4 , G5, G4 , G4 , and G4 . This gives

4 x G4 + G5 .

The group for 5 is GIG 2G3G4G5 with GL = G4.

.4



VIM -%.r P '"'~"~"J~rPJ .~ , 9r".('r MW7W 'V W.P'.U '%P .6 A; A" 19. %7 P6- %F Nil N, WT . IL- 1

4-4C ".J

The refore,

E (1-Gq) 3 + 6 x (1-G4)
3 + 3 x (1-G) 3 + 4 x (1-Ga) +: - + 4 x (I + .' *

(1 G + - 5 +,- 4

(1-0.82) + 6 x (1-0.91) 3 + 3 x (1-0.89) 3 + 4 x (1-0.91) 4 +
4 5(1-0.89) + (1-0.91)

33 3 4
(0.18) + 6 x (0.09) + 3 x (0.11) + 4 x (0.09) +

(0.11)- + (0.09)

: 0.005822 - 0.004374 + 0.003993 + 0.0002624 + 0.0001464 +

" 0.0000059

E : 0.0146137. -

Subtracting E from the transfer function for the N -version software gives

NVS = 0.9994623 - 0.0146137 = 0.9848486

NVS = 0.98485.

L1 through Ln = 0

G1 = (0.98485) x (0.997) = 0.9818955

G2 through GK 0

Hence, the adjusted Reliability value is

Reliability (0.9818955) x (1) : 0.9818955

Reliability 0,982.

Example 2

This example will evaluate the overall reliability for the

system shown in Figure 2. In this example, the N-version software will

consist of four versions. Each of the outputs from the N-version software

are submitted to an acceptance test (the identical acceptance test is

used for all four versions), and then the outputs from the acceptance

* *./ ** *%



%:, . w.4  ~. -. v ~ w w ~ j~ W F' w~~ ,, .vw , -v'..-vt-..w . . ..- . . . .

4-4.

test are input to the decision alcorihhm. The reliaoi"i'y values for

each of the software components are given in Table 6.

Software Component Reliability Value

Version 1 0.86
Version 2 0.79
Version 3 0.94
Version 4 0.68

Acceptance Test 0.98
Decision Algorithm 0.93

Table 6. Reliability Values for the Software Components
in the Figure that Represents the N-Version
Software with Acceptance Tests

First, the transfer function for the N-version software (NVS)

must be determined. In this example,

NVS = [1 - (1-GIG 2G3)(1-GIG 3G4)(1-GIG 2G4 )(1-G 2G3G4 )].

By substituting in the appropriate reliability values,

NVS = {1 - [1 - (0.86)(0.79)(0.94)][1 - (0.86)(0.94)(0.68)] x

[1 - (0.86)(0.79)(0.68)][1 - (0.79)(0.94)(0.68)]}

= [I - (1-0.638636)(1-0.549712)(1-0.461992)(1-0.504968)]

= [1 - (0.361364)(0.450288)(0.538008)(0.495032)]

= 1 - 0.0433368 = 0.9F66632

NVS = 0.95666.

By applying the software reliability model in Section 4.5,

LI through Ln = 0

GI = (0.95666) x (0.98) x (0.93) = 0.8718999

G2 through GK 
= 0

Al 1

"= ', ,? ," , . , . , .. ...-..- ,. . .. -. ,... . . .-. ,,5...,-... . . .. S . . .. . . .- . . .. . . . .



%

Tre-e ore %

Reliabili.v = (0.8718999) x (1) 0.8718999
(1)

Reiiabili:y = 0.872.

The probazility of coincident errors (E) for this example is

= 3(-GL + ( (I-GL + (1-GL)-

/ 2 " \ *,'. 
-

Tne groups for K 2) are

GG 2 , GIGs, GIG 4 , G2G3 , G2G4 , and G3G 4 .
-

Their respective GL values are G1 , G3 , G1 , G3, G2 , and G3. These values

can be grouped as 2 x G1 + 2 x G2 + 2 x G3.

The groups for (3), are GIG 2G3 , GIG 2G4 , GIG 3G4 , and G2G3G4 ,

with the GL values G3 , G1 , G3 , and G3 , respectively. This gives G1 +
3 x G3.

(4\)*The group for 4 is GIG 2G3G4 with GL G3.

Hence,

E 2 x (1-GI) 2 + 2 x (1-G2 )
2 + 2 x (1-G3 )

2 + (1-G1 )
3 +

3 x (1-G3) + (1-G3)
2 2 232 x (1-0.86) + 2 x (1-0.79) + 2 x (1-0.94) + (1-0.86) 3

+ 3 x (1-0.94) 3  + (1-0.94)-

= 2 x (0.14)2 + 2 x (0.21)2 + 2 x (0.06)2 + (0.14)3 + 3 x

(0.06)3  + (0.06) 4

= 0.0392 + 0.0882 + 0.0072 + 0.002744 + 0 000648 + 0,00001296

E = 0,1380049.

. . . " .--.



-- 43 .%.

Re-evaluating the reliability value for te N-version software and te 0

overall software reliability value give

NVS = 0.95-66632 - 0.00001296 0.9566:503

NVS = 0.95665

L1 through Ln = 0

GI = (0.95665) x (0.98) x (0.93) = 0.8718908

G2 through GK : 0
MI =1 i
A =.

Therefore, the adjusted reliability value is

0.8718908 x 1 0.8718908
Reliability 0.8718908____

Reliability 0.872.

Example 3.

This example will be more complicated, involving N-version

software in which only x verions are used at a time (reference Figure

3). For this example, the number of versions in the N-version software S

will be nine. Three of the versions will be run at a time, and their

outputs sent to the decision algorithm. If the decision algorithm fails,

then the system will rollback, and the next three versions will be run.

This cycle will continue until the decision algorithm passes or until

all of the versions in the N-version software have been run. Table 7 4

gives the reliability values for each of the components in this example.

First, the transfer function for the N-version software in

which only x versions are used at a time (NVSx) must be determined.

The transfer function is a combination of the equations in Section 4.5

for N-version software and a recovery block since the usage of x versions

at a time is N-version software, but applying rollback and going through

another x versions incorporates the concept of a recovery block. Hence,

the transfer function for the N-version software in which only x versions

are used at a time is

• '. - '- - ' '... . . . . . ---- .. • -,- -. '."- .-.-.-.-.. '--'.--. .--.-... '- -'.-.".- -, ,-'> .- >->'- "L- - ."> --.~iS



444

Soz.-ware Com2onent ~ e Ih-t ia>ue

ve rs4.or, 1 OB
Vers~ion 2 0.71
Version 3 0.66
Versior, 4 0.97
Version 5 0.92
Version 6 0.90
Ve-s4ion 7 0. 73
Version 8 0,85
Versilon 9 0.78

Ce:ision Algorithm 0,9i
Rollback 0.99

Table 7. Reliability Values for the Software Components
in the Figure that Represents the N-Version
Software in Which Only x Versions are Used
at a Time

NVSx =[I - (1-G1G2)(1-GjG 3)(1-G 2G3)] +

l[-(-GG)(1-GG)(1-GG) 1 x

{[1-(1-G4 G5 )(1-G 4G6 )(1-G 5G6)]} +

[1-C 1-G7G8)(1-G7Gq)(1-G8Go)].

8y substituting in the appropriate reliability values for this example,

NVSx fl{-[l-(0.84)(0.71)][1-(0.84)(O.66)][1-(0.71)(0.66)]]I

+ [1- {1-[1-(0.84) (0.71)] [1-(0.84) (0. 66)] [1-(0.71) (0. 66) ]"

x .'-[1-(O.73)(0.85)][1-(0.73)(O.78)][l-(085)(0,78)]j



%%

- h I'... '

=[i-(1-0.s964)(i-0.554:)(I-0.4686)] + :I-Fl-(li-.s 9 64) x

+ 41-[1-(I-0.s;64)(I-0.5544)(1-0.4686)]. x ,i-[I-(i-0.80C4) x ""

(!-0.783)(I1-0.828)]. x [1-( 1-0.6205) (1-0. 5694) ( -0.663)]

=[I-(0.4036)(0.&4E6)(0.s314)] + {1-[1-(0.4036)(0.4456) x

(0.5314)]? x [i-(0.1996)(0.2!7)(0.172)] + 1-LI-0.4036) .-

[1-(0.3795)(0.4306)(O.337)]

=(1-0.095569187) + [1-(1-0.095569187)] x (1-0.0074498704)
N.+ ri-(i-0.0955691837)] x [1-(i-0.0074498704)] x (I-0.0550701)

: 0.9044309 + (I-0.9044309)(0.9925501) + (1-0.9044309) x

.1~(1-0.9925501)(0.9449299)

= 0.90d4309 + 0.0948571 + 0.000672771

NVSx = 0.9999608 -

By applying the software reliability model, i

L1= (0.9999608) x (0.91) x (1-0.99) : 0.009099643 i

[The transfer function for rollback is (1.0 - reliability value). (Reference-,

Section 4.5.)] "

L2 through Ln : 0

G= (0.9999608) x (0.91) : 0.9099643

G2 through GK - 0
= 1

- = 1 - 0.009099643 = 0.9909004

* Therefore,

Reliability (0.9099643) x (1 = 0.9183207

(0.9909004)

Reliability 0.918.

Ll =(0.99968) (091) (10.9) 0.090964



T-e ac:Jracv o' tne nybric '-verson software reliablity value

will be a-fece: no: ail of the n versions are usec. (Re'erence Sec-ion

6.1.1.) For t: s exa-z§e, it is assumed that only six of the nine verslons

are ac':ali sec. TIs aives

* NY dSx : [1-(:-;1G 2)(I-GiG3)(1-G2G )] ~

0.90C9 0.09a8571

NVSx = 0.999288

LI  (0.999288) x (0.91) x (1-0.99) 0.009093521

L2 through Ln  0

GI = (0.999288) x (0.91) 0.90935208

G2 through GK 
= 0

l=l1

= 1-0.0090935 = 0.9909065

Hence, the overall software reliability va:se wl., r

Reliability =(0.9093'

*i -( 99C117-
-Reliability = 0.9A7 ' ...

.a.

i it unIlap~mml l~n lm



RD-01S 965 SOFTWARE DEPENDOILITY ASSESSMENT METNODSCU) BATTELLE 2/2
COUJNIS DIV OH S A PRATER ET AL. NOV 6

, 7UNC:RSIFEDDOT/FA/CT-S/27 NS2-li953F/125 
M

WcMSFENEMG1/5N



1.8

MICROCOPY RESOLUTION TEST CHAR'

I liii

NA' -NCPR REA,IO TERST 4-

. . . -. - . .. . .. . . . . . , .. r t.. ._-Q( -.. S ! % A-% .. ' . . a.. ., . % % % % "

%..

% % e Z Z

mt :e e-r -- e 'e



4-47

The probability of errors for the first group of three versions
is

El 2) (1-GL)2  ) (1-GL

The groups for (2)* are GIG 2, G!G3, and G2G3 , with GL 2 x G1 + G2.

The group for (3) is GjG 2G3 with GL = GI .

" Hence,

El = 2 x (I-G!)2 + (1-G2)
2 + (!-GI) 3

.4= 2 x (1-0.84)2 + (1-0.71)2 + (1-0.84) 3

= 0.0512 + 0.0841 + 0.004096

El = 0.139396.

The probability of errors for the second group of three versions

7. is

S( ( )2 + () 3

2 3_

The groups for are G4G5 , G4G6 , and G5G6 , with GL 2 x G5 + G6.3) *
The group for 3 is G4G5G6 with GL = G5.

The value for E2 is

E2 = 2 x (1-G5)
2 + (I-G6)

2 + (IG5)3

= 2 x (1-0.92)2 + (1-0.90)2 + (1-0.92)
3

= 0.0128 + 0.01 + 0.000512

E2  0.023312.

The probability of errors for the third group of three versions

is 
-i

"I.1
'Pp



4-48

The groups of (2 for E3 are G7G8 , G7G9 , and G8Ga, with GL = 2 x G8

G9. The group o 3 is G7G8GG with GL = G8. 4-,

Hence,

E3 = 2 x (1-0.85)2 + (1-0.78)2 
+ (1-0.85) 3 "

= 0.045 + 0.0484 + 0.003375

E3 = 0.096775.

Considering these probabilities when the transfer function

for the N-version software (in which only x versions are used at a time)

is calculated gives

NVSx [1-(1-GIG 2 )(1-GIG 3)(1-G 2G3 )-E1j +

{I-[i-(I-GIG2 )(1-GIG 3)(1-G 2G3)-E] } x

[1-(1-G4G5)(1-GdG 6)(I-G 5G6 )-E2 +

fI-[I-(I-GIG2)(1-GIG 3 )(1-G 2G3)-EI]} x

{ -[i-(I-G 4G5)(1-G 4G6)(1-G5G 6 )-E2]} x

[1- ( 1-G7G8) ( 1-G7G9 ) ( 1-G8G9 )-E3 -

= (1-0.095569187 - E1) + [1-(1-0.095569187 - El)] x

(1-0.0074498704 - E2) + [I-(1-0.095569187 - E1)] x

[1-(1-0.0074498704 - E2)] x (1-0.0550701 - E3 )

= (0.9044309 - EI) + (1-0.9044309 + E1)(0.9925501 - E2)

+ (1-0.9044309 + E1)(1-0.9925501 - E2 )(0.9449299 - E3)

= (0.9044309 0.139396) + (0.0955691 + 0,139396)(0.9925501

- 0.023312) + (0.0955691 + 0.139396)(0.0074499 + 0.023312)

x (0.9449299 - 0.096775)

= 0.7650349 + (0.2349651)(0.9692381) + (0-2349651)(00307619)

x (0.8481549)

= 0.7650349 + 0.2277371 + 0.0061304

NVSx = 0.9989024.



JS

4-49 -

S

The overall software reliability value with the coincident errors considered

is determined as

LI = (0.9989024) x (0.91) x (1-0.99) = 0.0090900118

L2 through Ln = 0

G1 = (0.9989024) x (0.91) : 0.9090012 '

G2 through GK : 0
- 1,

1 1 - 0.0090900118 0.99091 

Therefore, .. ,

Reliability = (0.9090012) x (1) = 0.9173398
(0.99091)

Reliability = 0.9173.

Example 4.

The hybrid N-version software format, shown in Figure 4, will

be evaluated in this example. In this example, the N-version software

will consist of three versions. The outputs of these versions are fed

into a decision algorithm. If the decision algorithm fails, then the

software will rollback and run through the three versions again. However, -V

this time the outputs of the versions are input to an acceptance test
"I-,

prior to entry to the decision algorithm. For this example, it is assumed

that the reliability values for the individual software components are

as given in Table 8.

The transfer function for the N-version software is

NVS = I-(1-GIG 2 )(1-GIG 3 )(1-G 2G3)
= 1-[i-(0 67)(0.78)][I-(0.67)(0.89)][i-(0.78)(0.89)] .-.

= 1-(1-0.5226)(1-0.5963)(1-0.6942)

= 1-(0.4774)(0.4037)(0.3058)

NVS = 0.94106428. 6

- .-.. .-. ..%



W M V 7W7W WMir MinT W~ IU16 Mmymy r FW T

4-50

Software Component Reliability Value

Version 1 0.67
Version 2 0.78

Version 3 0.89
Ac:eptance Test 0.86
Decision Algorithm 0.88

Rollback 0.98

Table 8. Reliability Values for the Software Components
in the Figure that Represents the N-Version
Software in Which the Outputs are Subjected to
an Acceptance Test if the Decision Algorithm
Fails

The variables of the software reliability model are

Closed Loop #1 = (0.94106428) x (0.88) x (1-0.98) = 0.01656273

Closed Loop #2 = (0.94106428) x (1-0.86) x (0.88) x (1-0.98)

= 0.0023187824
[Remember that the transfer function of the equivalent block in a feedback

or feed-forward path is (1.0 - reliability value).]
ZL1 = Closed Loop #1 + Closed Loop #2 = 0.018881512

4L 2 through Ln = 0
GI = (0.94106428) x (0.88) = 0.82813657

G2 = (0.94106428) x (1-0.86) x (0.88) = 0.11593912JI

G3 through GK : 0

2= 1
13 through K= 0

SI- ZL1  1 - 0.018881512 = 0.981118488

Therefore,
P

Reliability (0.82813657 x 1) + (0.11593912 x 1) 1 09622444

(0.981118408)
or

Reliability =0.962.

.5 i
-S% %



4-51

To improve the accuracy of the software reliability model,

the probability of coincident errors (E) might be considered. (Reference

Section 7.0.) For this example,

E(3> (1G)2 + (3> (1G)3.

The groups for (2) are GIG 2, GIG 3, and G2G3 with resoective GL values

of G2 , G3, and G3, or G2 + 2 x G3. The group for is GIG 2G3 with

GL = G3.

Thus,

E = (1-G2 )2 + 2 x (1-G3)
2 + (1-G3 )

= (1-0.78)2 + 2 x (1-0.89)2 + (1-0.89) 3

223
= (0.22) + 2 x (0.11)2 + (0.11) 3

= 0.0484 + 0.0242 + 0.001331

E = 0.073931.

By subtracting the probability of coincident errors from the N-version

software transfer function, a conservative value of the reliability value

for the N-version software and the overall software reliability value

can be determined.

NVS = 0.94106428 - 0.073931 = 0.86713328

Closed Loop #1 = (0.86713328) x (0.88) x (1-0.98) = 0.015261546

Closed Loop #2 = (0.86713328) x (1-0.86) x (0.88) x (1-0.98)

= 0.0021366164

ELI = 0.015261546 + 0.0021366164 = 0.017398162

ZL2 through ZLn = 0

GI = (0.86713328) x (0.88) = 0.76307729

G2 = (0.86713328) x (1-0.86) x (0.88) = 0.10683082

G3 through GK 0

A2= 1

63 through AK 0
= 1 - ZL 1 = 1 - 0.017398162 = 0.98260184

J%



4-52

Therefore,

Relibiliy =(0.76307729 x 1) + (0.10683082 X1) =0830~A

(0.98260184)

Reliaoility =0.885.

J1~.



ram~~~~~~ ~ ~ ~ ~ ~ 31A-WW. rVV'UWWJ W WWWlWWW WjWV W- WU WWi. WV WV WV.VWV~5U

4-53

APPENDIX II •

RECOVERY BLOCK CALCULATIONS

The transfer function for a recovery block is dependent upon the

number of alternates (n) that are used. This transfer function is calculated

with the following equation:

GI + (I - G!)G 2 + (I - Gj)(1 - G2)Gi +

witn Gi the reliability value for alternate i and S

i 1, 2, 3 .... n. % ,

The examples below demonstrate the determination of the overall software
reliability value with this equation and the software reliability model. S

Example 1

Figure 5 shows the general format of a backward recovery block. V
For this example, the number of alternates will be four. The reliability •

value for each of the software components is listed in Table 9.

Software Component Reliability Value

Alternate 1 0.86
Alternate 2 0.75
Alternate 3 0.79
Alternate 4 0.84

Acceptance Test 0.91
Rollback 0.93

Table 9. Reliability Values for the Software Components •
in the Figure that Represents the General
Format of a Backward Recovery Block

%,,

-'%.l.

" - ' - , . • , " • , , " , .- " - ', , , , . "w ' "4 ,w , - , . , , , ; ,- " . - ' v " ' . , " " , - ' , ; W ' ', " . . - ' . -" ' .' Z - " . " . ' ' ." ' . . ' ' . ' . - . " ; . ' . " , - - -



4-54

The transfer function for the recovery block (RB) is

R B G 1 + ( 1 - G I)G 2  + ( 1 - G I)(1 - G 2 )G 3  +

(1 - G1)(1 - G2)(1 - G3)G4

: 0.86 + (1 - 0.86)(0.75) + (1 - 0.86)(1 - 0.75)(0,79) +

(I - 0.86)(1 - 0.75)(1 - 0.79)(0.84)

: 0.86 + (0.14)(0.75) + (0.14)(0.25)(0.79) +

(0.14)(0.25)(0.21)(0.84)

: 0.86 + 0.105 + 0.02765 + 0.006174

RB 0.998824

The variables of the software reliability model will be

L = (0.998824) x (0.91) x (1.0 - 0.93) = 0.0636251

[Recall that the transfer function for rollback is (1.0 - reliability value).

This was defined as such in Section 4.5.]

L2 through Ln = 0

GI = (0.998824) x (0.91) = 0.9089298G2 through 
GK = 0

L2 through AK = 0

= 1 - 0.0636251 = 0.9363749

Therefore,

Reliability = (0.9089298) x (1) = 0.9706901

(0.9363749)

Reliability = 0.97.

I +' "+% + ~ m " "" " " 

" 
°" am- """'' '" '" "m" """" " 

"

" 
%

"' 
"

"" " " 
%

"m "+ " " '" " +~ m "- +-"". ".+"- m" -"" . "-""-""-+" 
+ .' . ,



4-55

As was discussed in Section 6.1.2, if only two of the alternates

are actually used, although the recovery block supplies four alternates,
,.0%

this will decrease the reliability of the recovery block and consequently

decrease the overall software reliability. The following calculations show

this.

RB = G1 + (1 - GI)G 2 = 0.86 + (1 - 0.86)(0.75)
= 0.86 + 0.105 = 0.96=

L1 = (0.965) x (0.91) x (I - 0.93) = 0.0614705

L2 through Ln = 0

Gi = (0.965) x (0.91) 0.9089298

G2 through GK = 0

A2 through AK = 0

A - 0.0614705 0.9385295

Hence,

Reliability = (0.9089298) x (1) = 0.9684616
(0.9385295)

Reliability = 0.968 when only two of the alternates are used.

Example 2

The general format of a forward recovery block is shown in Figure

6. This example will evaluate the overall software reliability of this figure

(six alternates will be used: one primary alternate and five additional

alternates), with the reliability values assigned as shown in Table 10.

The transfer function for the recovery block (RB) is

RB :G + (I - GI)G 2 + (1 - GI)(I - G2)G3 +

(1 - GI)(1 - G2 )(1 - G3)G 4 +

(1 - GI)(I - G2 )(1 - G3)(I - G4 )G5 +

(1 - GI)(I - G2)(I - G3 )(1 - G4 )(1 - G5)G6

I

04..



I

4-56

Software Component Reliability Value

Alternate 1 0.81
Alternate 2 0.72
Alternate 3 0.73
Alternate 4 0.74
Alternate 5 0.85
Alternate 6 0.86

Acceptance Test 0,97
Rollback 0.98

Roll-Forwara 0,89

Table 10. Reliability Values for the Software Components
in the Figure that Represents the General
Format of a Forward Recovery Block

= 0.81 + (1 - 0.81)(0.72) + (1 - 0.81)(1 -0.72)(0.73) +

(I - 0.81)(1 - 0.72)(1 - 0.73)(0.74) +

(1 - 0.81)(1 - 0.72)(1 - 0.73)(1 - 0.74)(0.85) +

(1 - 0.81)(1 - 0.72)(1 - 0.73)(1 - 0.74)(i - 0.85)(0,86)

= 0.81 + (0.19)(0.72) + (0.19)(0.28)(0.73) +

(0.19)(0.28)(0.27)(0.74) + (0.19)(0.28)(0.27)(0.26)(0.85)+

(0.19)(0.28)(0.27)(0.26)(0.15)(0.86)

= 0.81 + 0.1368 + 0.038836 + 0.01062936 + 0.003174444 + 0.00048176856

= 0.99992157256

RB = 0.9999216.

With the software reliability model,

LI = (0,9999216) x (0.97) x (1 - 0.98) = 0.019398479

[Note that the transfer function for rollback is (1.0 - reliability value).]

L2 through Ln = 0

G1 = (0.9999216) x (0.97) = 0.96992395

G2 = (0.9999216) x (0.97) x (I - 0.98) x (1 - 0.89) : 0.0021338327

" -.- "t "," ." ., "-' " -' '." ", -- ; " - " " - . '- " " " ." ." - • ", ' " " " ." " ,- ". ', " • " " ', ..," -" '-" '. ". " - -' " " '.% ': :'



4-57

[Remember that the transfer function for rollback and roil-forwara are (1.0

- reliability value). This was discussed in Section 4.5.7

G3 through GK = 0

i= 1

A3 through AK = 0

= I - 0.019398479 : 0.98060152

Therefore,

Reliability = (0.96992395 x 1) + (0.0021338327 x 1)
(0.98060152)

= (0.97205778)/(0.98060152) = 0.99128725

Reliability = 0.991.

Discussion of the Results:

This result is as expected. With just the n alternates, acceptance

test, and rollback, the overall reliability would be

Reliability = - (0.9999216)(0.97)

1 - (0.9999216)(0.97)(1 - 0.98)

Reliability = 0.9891112 = 0.989.

The roll-forward should increase this reliability value, as it does.

To evaluate the effect on accuracy when less than the n alternates
(in this example n = 6) are actually used, the reliability of this example

will be evaluated with n = 3, n = 4, and n = 5.

For n 3,

RB = G1 + (1 - GI)G 2 + (I - GI)(I - G2)G 3

= 0.81 + (I - 0.81)(0.72) + (1 - 0.81)(1 - 0.72)(0.73)

= 0.81 + 0.1368 + 0.038836

RB = 0.985636

,(4



4-58

Using the software reliability model,

p

L1  = (0.985636)(0.97)(1 - 0.98) : 0.019121338

L2 through Ln = 0

G1 = (0.985636)(0.97) = 0.95606692

G2 = (0.985636)(0.97)(1 - 0,98)(1 - 0.89) = 0.0021033472

G3 through GK = 0

-2=
-3 zhrouh K =0
- = 1 - 0.019121338 = 0.98087866

gy = (0.95606692 x 1) + (0.0021033472 x I) = 0.97684893gives Reliability 0.97684893_______________

(0.98087866)

Reliability : 0.977.

For n 4,V. RB 0.81 + 0.1368 + 0.038836 + 0.01062936

RB :0.99626536

Using the software reliability model,

LI  (0.99626536)(0.97)(1 - 0.98) = 0.019327547

L2 through Ln = 0

G1 = (0.99626536)(0.97) = 0.9663774

G 2 = (0.99626536)(0.97)(1 - 0.98)(1 - 0.89) = 0.0021260303

G3 through GK =0

L3 through 'K = 0

I - 0.019327547 = 0.98067245

gives Reliability = (0.9663774 x 1) + (0.0021260303 x 1) = 0.98759115

(0.98067245)

Reliability = 0.988.

:.



4-59

For n = 5,

RB = 0.99626536 + 0.003174444

RB = 0.999439804

Using the software reliability model,

LI = (0.999439804)(0.97)(1 - 0.98) : 0.019389132

L2 through Ln = 0

G1 =(0.999439804)(0.97) = 0.9694r661

G2 = (0.999439804)(0.97)(1 - 0.98)(1 - 0.89) = 0.0021328C'5

Gi through GK 0

1

L3 through AK =0

A = I - 0.019389132 = 0.98061087

gives Reliability = (0.96945661 x 1) + (0.0021328045 x 1) _ 0.99080017
(0.98061087)

Reliability = 0.991.

The following table compares the reliability values that are obtained

by using less than n alternates in this example.

Number of Recovery Block Overall Software

Alternates Used Reliability Value Reliability Value

n = 3 0.98564 0.977

n = 4 0.99627 0.988
n 5 0.99944 0.991

n = 6 0.99992 0.991

Table 11. Accuracy Effects on This-Example When Less
Than n Alternates are Actually used

J.



4-6u

Discussion of the Results:

This is as expected. As stated in Section 6.1.2, by actually using

fewer than the n alternates, the reliability values for the recovery block

and the overall software will generally decrease. However, as was seen in

the case with n = 5, by not using the sixth alternate (which has a reliability

value of 0.86 in this example), an extremely slight increase in reliability

was found.

Examole 3

Figure 7 shows a possible variation of a forward recovery block.

For this example, the number of alternates will be three. The reliability

value for each of the software components is listed in Table 12.

Software Component Reliability Value

Alternate 1 0.80 %
Alternate 2 0.70
Alternate 3 0.90

Acceptance Test 0.98
Any Process 0.97
Rollback 0,95

Roll-Forward 0.96

Table 12. Reliability Values for the Software Components
in the Figure that Represents a Variation of
the Forward Recovery Block

The transfer function for the recovery block (RB) is

RB = G1 + (1 - GI)G 2 + (1 - GI)(I - G2 )G3

= 0.80 + (I - 0.80) x (0.70) + (I - 0.80) x (1 - 0.70) x (0.90)

= 0.80 + (0.20 x 0.70) + (0.20 x 0.30 x 0.90)

= 0.80 + 0.14 + 0.054

RB = 0.994.

..



4-61

The variables of the software reliability model are 0

L= (0.994) x (0.98) x (I - 0.95) = 0.048706

L2 through Ln =0

G1 = (0.994) x (0.98) x (0.97) = 0.9448964

G2 = (0.994) x (0.98) x (1 - 0.95) x (1 - 0.96) = 0.0019482

G3 through GK = 0
.=1

2=

;3 through :K 0

1 - LI = 1 - 0.048706 = 0.951294

Therefore,

Reliability = (0.9448964 x 1) + (0.0019482 x 1) 0.99532279
(0.951294)

Reliability = 0.995.

To demonstrate the effect on accuracy if less than the n alternates

(in this example n = 3) are actually used, the reliability of the recovery

block and overall software reliability value will be re-calculated for

n = 1 and n = 2.

For n = 1,

RB = 0.80.

With the software reliability model,

LI = (0.80) x (0.98) x (1 - 0.95) = 0.0392

L2 through Ln = 0

GI = (0.80) x (0.98) x (0.97) = 0.76048

G2 = (0.80) x (0.98) x (1 - 0.95) x (1 - 0.96) 0.001568

G3 through GK = 0

A2  1

A3 through AK =0

A = 1 - = - 0.0392 = 0.9608



4-62

Reliability = (0.76048 x 1) + (0.001568 x 1) 0.7931391

(0.9608)

Reliability = 0.793.

For n = 2,

RB = 0.80 + 0.14 = 0.94.

With the software reliability model,

L1 = (0.94) x (0.98) x (1 - 0.95) : 0.04606

L2 through Ln = 0

G1 = (0.94) x (0.98) x (0.97) = 0.89356a

G2 = (0.94) x (0.98) x (1 - 0.95) x (1 - 0.96) = 0.0018424

G3 through GK = 0

L3 through 6K = 0

= 1 - L1 = 1 - 0.04606 = 0.95394

Reliability = (0.893564 x 1) + (0.0018424 x 1) = 0.93864017
(0.95394)

Reliability = 0.939.

Table 13 compares the reliability values of the recovery block

and the overall software reliability values that are obtained by using all

or less than the n alternates in this example.

Number of Recovery Block Overall Software
Alternates Used Reliability Value Reliability Value

n = 1 0.80 0.793

n = 2 0.94 0.939

n = 3 0.994 0.995

Table 13. Comparison of Reliability Values When Less
Than n Alternates are Actually Used



N
4-6p

,f1

*Ti0pg ef lakitetonly

-. .

o ° .o o . . . ... !p
,"Ar . -.. ,'- ,,.-, ,,,, ;w"-, ':-2-,,,, -':."-.-- -. ."- -./ ",.o-- -;;-"-. "-. --; -" -"- ---- "'"-- "-"'-"-.-."v -.- -.... .'. ,.'.-'.-'.'. .



w,

4-64

APPENDIX III

FEEDBACK LOOP CALCULATIONS

For basic feedback loops such as those shown in Figures 3, 4, and

: the ideal software reliability value of the individual blocks and overall

software reliability is 1.0. With an original block diagram of the form

0
U

N '..,..-

P U
S.N V/NI T

T r

H S

with y : +1 or -1

Figure 12. Basic Feedback Loop

the block diagram transformation to eliminate a feedback loop gives the equiva-

lent block diagram of the form 1.

0
I U
N GIG 2  T -

U I - (y) x (GIG 2H) U
T T

Fs'

Figure 13. Basic Feedback Loop Equivalent.. °

C-

,%

*...S ? . . . S..lS 5" -.. ,.S S .



4-65

if it is a necative feedback loop, the equivalent transfer function

is:

GIG 2
1 + GjG 2H

With G1 = 1.0, G2  1.0, and H 1.0, the overall reliability value would

be 0.5, which is undesirable. It is desired that the overall software reliabilizy
and individual block reliability values be 1.0. With the negative feedback

loop and these goals, there are tnree cases to be evaluated.

Necative Feedback Loop, Case 1:

* GIG2
Want: 1 : _ _ _

1 + GIG 2H

If: GI = 1.0 and H = 1.0

Then: G2__ _ : 1.0 or I + = G2.
I + G2

Conclusion: This is invalid.

Negative Feedback Loop, Case 2:

GIG2
Want: 1.0 :

I + GIG 2H

If: G2 = 1.0 and H = 1.0

Then: I + GI =G

Conclusion: This is invalid.

"p"..



" ,

4-66

,.-

Necative Feecback Looo, Case 3:

Want: 1.0 = -.

1 + GFG2H a

If: Gi  : 1.0 ana G2  1.0

Then: 1 :1.0 or 1 H I1,H
,+

Conclusion: H 0.

If it is a positive feedback loop, the equivalent transfer function

is:
5-

G1G2

I - GIG 2H

As GI  => 1.0, G2  : 1.0, and H > 1.0, the overall reliability value approaches

+ m. Again, it is desired that the overall software reliability and individual

block reliability values be 1.0. There are three cases to be evaluated with

the positive feedback loop.

Positive Feedback Loop, Case 1:

", GIG 2
Want: 1.0 =

I - GIG 2H

If: G1  = 1 C and H 1,0

Then G2
Then. 1 0 or I - G2  , ar G

I -G 2

Conclusion: This is undesirable



4-67

Posizive Feedback Looo, Case 2:

Want: 1.0 :

1- GIG2H

If: G2 = 1.0 and H 1 1.0

Then: = !.0 or 1 - GI  G, or G =O.

1 -G

Conclusion: This is undesirable.

Posi'tve Feedback Looo, Case 3:

0 GjG2
Want: 1.0 =

I - GjG 2H

If: GI  1.0 and G2 = 1.0

Then: : 1.0 or 1 - H 1

1- H

Conclusion: H = 0.

By comparing the results of the positive and negative feedback

cases (since it is desired that the software reliability model should accommodate

both of these options), it is obvious that the transfer function of H must

equal zero. Therefore, the transfer function of the equivalent block in

any feedback path is (1.0 - reliability value).

* .



.

4- 68

APPENDIX IV
FEED-FORWARD CALCULATIONS

F'ues6ad r examples of block diagrams involving feed-forwarc
path. i anidea siuatonthe relilability value of t~e individual blocks

(G1 G2 Gi...n) nd heoverall software reliability (R) are 1.0. it

G-2... Gn R I-. igue 1 shws heblock diagram for a basic feec-forwar-

0

T

--- - G2

Figure 14. Basic Feed-Forward Path

A block diagram transformation to eliminate the feed-forward loop
gives the following equivalent block diagram.

0

UU

T U
T T

Figure 15. Basic Feed-Forward Path Equivalent



a4-69

.,ceeally, if the reliability value of the individual blocks is 1.0,

then the oveall reliability should be 1.0. Therefore,

a n:: 1.0 = GI + G2

If: Gi  = 1.0

Then: G2 = 0 or 1.0 1.0 + (1.0 - G2 )

Concusion: The transfer function of the ecuivalent block in any
feed-forward path is (1.0 - reliaoiliy value).

I,



4-70

APPENDIX V

ANALYSIS OF SCOTT'S RECOVERY BLOCK RELIABILITY MODEL

in Scozt's recovery block reliability model, the variables are

defined as:

P(Ci) = the probability of alternate i executing correctly;

P(.i) = 1 - P(Ci); o

P(CR ) = the probability of the reccvery program executing correctly;

P(:R) = P(CR )  . ,,%

P(A:) = the probaoility of accepting an incorrect result;

P(RI) = the probability of rejecting an incorrect result
-1i - P(AJ);

P(RC ) = the probability of rejecting a correct result;

P(A'C ) = the probability of accepting a correct result
- - P(Rc);

Type 1 Error the program alternate produces an incorrect result,
but the acceptance test labels the result as correct;

Type 2 Error the final alternate produces correct results, but
the acceptance test erroneously determines that
the results are incorrect;

Type 3 Error = the recovery program cannot successfully recover _
the input state of the previous alternate in prepa-
ration for executing another alternate or could
not successfully invoke the next alternate;

Type 4 Error the last alternate produces incorrect results and
the acceptance test judges that the results are
incorrect;

n = the number of alternates; and

R = the reliability.

The results of Scott's recovery block reliability model will be

compared to those that would be obtained in the software reliability model



4-71

:ha: has bee :rooosec. The block diagram for the recovery block tna: is

ceszrine: ti Sco:t woul: IooK l4ke:

e r n a e 0 jai
-A'_.e__ate 2 Test T

P
e aen U

Rollback _

Figure 16. Basic Recovery Block
-I-

For n = 1, tne feecback loop would be deleted, giving a block diagram of

I0
Primary Acceptance U

N Alternate Test T
U (GI) (G2) P
T 

U

Figure 17. Special Case Recovery Block with Only One Alternate p

with an overall transfer function of R :G x G2. This special case with

n 1 is computed with Scott's recovery block reliability model as

R I- [Type I Error + Type 2 Error + Type 3 Error +
Type 4 Error],

with Type 1 Error =P(Aj)P(A1 );
Type 2 Error P(C)P(RC);
Type 3 Error = 0; and
Type 4 Error = P(II)P(RI).

By substitution,

GIG 2  I - [P(iI)P(A I) + P(CI)P(R C ) + P(Il)P(RI)].

M1

r
4

• "."." ," '#'w # " " ".'. " " " " . "" 'I *m w ' ' ',,', ' , ,', .- ,... .' .. . . '



a 4-72

G-.G- I 1 [ - (C1)I[l - P( :) +(i ,i ,( C -

[Il P(Cj)-P(Rj'-.

* Mul ti plyi nc out the factors ai yes

I-1 + P(Ci)P(R-) -P(Ci) - 7 Pl(C1 )

-P(,C-)P(Ar) +P()-

* fl2s can te recuced to

G1G2 =I[1 -1 P(CI)P(AC)] P(Ci)P(AC).

This is as expected, with GI P(Cl) and G2 =P(AC).

For n =2,

GjG2  1- [Type 1 Error + Type 2 Error +

I1- GjG 2H Type 3 Error + Type 4 Error].

By substitution,

G1G2  1 [iP(Ij)P(A1 ) + [P(11 )P(Al) -0] x

I-G1G2H [P(CR)P(I2) X [P(Ci)P(RC) +

A P(I1)P(Rl)]l + {P(CI)P(RG)P(CR)P(C2) X a

LH(RC) + P(11')P'j/ +

P(C1 )

{P(CI)P(RC)P(IR) +P(Il)P(RI)P(IR)l

IP(Ij)P(Ri)P(CR)P(I2)LP(RI) +

P(Ij)



4-73

Multiplying out the factors and cancellino alike numerator anc cenominatorI%

terms gives

0%

_________ 1I [P(IjjP(A;) + P(R:)P(CR)P(12)P(Cl)P(RC) +

1 -GiG7H P(A9IP(cR)P(I 2)P(:j)P(R:) +

P(Ci)P(RC)P(CR)P(C 2)P(RC) +

P(RC)P(CR)P(C2)P(71.)P(RI) +

P(Cl)P(RC)P(IR) +P(Il)P(R7)P(".R) +

P(Il)P(RI)P(CR)P(: 2)P(RI) +

By substitution,

GjG 2  I 1 j[1 -P(Cl)][1 -P(R,)] +

1 -GjG 2H [1 -P(RI)]P(CR)[1 P(C2)]P(C1 )x

[1 - P(AC)] + [1 - P(RI)]P(CR) X

[1 - P(C2)ll1 - P(Cl)]P(RI) +

P(Cj)[1 - P(AC)]P(CR)P(C 2)[1 - P(C]+

[1 - P(AC)]P(CR)P(C2)[1 - P(Cl)]P(RI) +

P(Cl)[1 - P(CI1- P(CR)] +

[1 - P(Cj)]P(R1 )[1 - P(CR)] +

[1 - P(Cl)]P(RI)P(CR)[1 - P(C2)]P(RI) +

P(Rj)P(CR)[1 P(G2)]P(Cl)[1 P(C]!

With the factors multiplied out,

GjG 2  =1 -[1 + P(Cl)P(RI) -P(Cj) -P(RI) + P(Cl)P(CR)-

1 -GjG 2H P(CI)P(C2)P(CR) - P(Cl1)P(CR)P(RI)

P(Cl)P(C2)P(CR)P(RI) - P(AC)P(CI)P(CR) +

P(AC)P(Cl)P(C2)P(CR) + P(AC)P(Cl)P(CR)P(RI)-

P(AC)P(Cl)P(C2)P(CR)P(RI) + P(CR)P(R7)-1>
P(Cl)P(CR)P(RI) - P(C2)P(CR)P(RI)+

P(CI)PCC2)P(CR)P(RI) - P(CR)P(RI)P(RI) +

P(CI)P(CR)P(RI)P(RI) + P(C2)P(CR)P(RI)P(RI)-

P(CI)P(C2)P(CR)P(RI)P(RI) + P(Cl)P(C2)P(CR)-



P(AC-) P Cl)P(C 2)P(CD) -P(A 0 )P(C,.)P(C 2)P(CR)+
P( AC)P(mAC)P(Cl)P(C 2)'(CR P(C2)P(CR)PRI)

P(C!)P(C 2)P(CR)P(R7) - PrCP(7P( P(- +

"(C)P(,Cl)P(C2)P(CR)P'(7)+ : ) - -(I(R

P(AC)P(Cl) +P(AC)P(C.)P(CR) + P(R1 )-

P(CR)P(RI) - P(CI)P(R7) P(CI)P(CR)P(R:) +

P(CR)P(RT)P(RT) - P(C2)P(CR)P(P7)P(R7)-

P(Cl)P(C2)P(CR)P(RI)P(R:) + P(CI)P(CR)P(RI)-

P(A1C)P(CIMPCp9P(R:) - P(Cl)P(C2)P(Co)P(R:)+

P (AC)P( Cl)P (C2 )P( CR) P( RT) ]

By cancellat.4on,

GjG 2  =1 -[1 -P(AC)P(Cl)P(C2)P(CR) +

1 -G 1G2H P(AC)P(AC)P(Cl)P(C2)P(CR)-

P(AC.)P(C2)P(CR)P(RI) -- P(AC)P(Ci) +

P(AC)P(Cl)P(C2)P(CR)P(RI)].

* Rearranging gives

G1G2  =P(AC)[P(CI)P(C2)P(CR) -P(AC)P(Cl)P(C 2)P(CR) +

1I GjG 2H P(C2 )P(CR)P(RI) + P(Cl)-

P(Cl)P(C2)P(CR)P(RI)].

*For n 3,

GjG 2 1- Tye1Err+Tp 2Ero+
1~ -[1GHType Error + Type Error +

* By substitution, 
"

G1G2  =1-[{P(I 1)P(Al) 4 '

1 -GIG 2H P(AI)P(CR)P(I2)[P(CI)P(RC) + P(11)P(R1 )] +

% P(AI)P(CR)P(12)[P(Cl)P(R.) + P(11 )P(Rl)] x

%.



4-75

P (CR)P(iJ) [PC)(C) + P(12)P(Rj)]'~ +

P(12
{P(C1)P(C2-)P(CR)P(RC)P(RC)P(CR)P(C3) x
[P(RC) + P(12)P(RI) j+ P(C2)P(CR)P(I1) x

P (C2)

P(RC)P(RI)P(CR)P(C3)[P(RC) + P(I2)P(R7) j;+

P(C2)
in'. P(CI)P(RC)P(IR) + P(11)P(RT)P(IR) +

[P(Cj)P(RC)P(IR) + P(IlP(R:)PIR)] X

P(CR)1P(C2 )P(RC) + P 3)PR:)- +

[P(j)(RjP(R)P12[P(j)+ P(Cl)P(RC) x

.4 r(11

P(CR)P(' 3)[P(Rj) + P(C2)P(RC) ]j

P(12)

By multiplying out the terms (and arranging the coefficients in alphabetical and
numerical order),

GjG2  =1 - P(AI)P(11 ) + P(Aj)P(C1)P(CR)P(12)P(RC) +

1 -GjG 2H P(AI)P(CR)P(II)P(I 2)P(Rj) +

[P(Aj)P(C1)P(CR)P(CR)P(13)P(RC) +

P(AI)P(CR)P(CR)P(II)P(13)P(RI)] x

[P(C2)P(RC) + P(12)P(RI)] +
d(IPC)(3PC)(C)(CPR)(C

P(C1)P(C2)P(C3)P(CR)P(CR)P(RC)P(RC)P(RC) +

P(C2)P(C3)P(CR)P(CR)P(11)P(RC)P(RC)P(RI) +

P(C3)P(CR)P(CR)P(IR)P(I2)P(RC)P(RC)P(RI) +

P(CI)P(CR)P(CR)P(IR)P(RC)P(RC)PR)() +

P(C1)P(CR)P(13) +P(I)P(R)P(R) +

P(C1)P(C2)P(IR)P(IR)P(RC)P(RC) +

P(CR)P(CR)P(I3)P(IR)P(R-)P(Rj) +

EP(C2)P(CR)P(I1)P(R)P(C)P(RI)P(I +

*P(Cl)P(CR)P(CR)P(1 2)P(13)P(RC)P(RI)] x

[P(RI) + P(C2)P(RC) }

P(12)



q 4-76

By substitution [to elimninate th~e P(A1 ) and P(:i) ferms~,

"pGIG 2  =1 [1-?( Cl)][I - P(Rr,)] +

1 -G1G 2H [I - P ( R T)'IP(C)P (CR)[1 - P (C 2)l1 P '
[1 - P(RIY'P(CR)[1 - P(C'.)][1 - P(C2)]-P(R:)+

[ 1 - P(R:)][P(CI)P(CR)P(CR)[I - P(C3z)%1

[1 - P(-?T)]P(CR)P(CR)[L1 -P(CI)ll1 -P(C-)-'P(R:)! x -

r(Cq)[I P(AC)] + 1 -(C)P(RT). +

P'Cl)P(C 2)P(C3)P(CR)P(CR)[1 - P('C)][1 - P(AC)'.[1~ - ()7

P(C)P'%C3)P(CR)P(CR)[1 - L(~) J1 J (c~l

P(C2)P(C3)P(CR)P(CR)[1l - P(Cl)][1 -P(AC)]l P- C) x

P(R:) + P(C3)P(CR)P(CR)[1 - P(C1)][1 - P(C2)ll1 - P'1Ix
P(RT)P(RT) + P(Cl)[I -PC)[ (~]+[

[1 - P(CR)]JP(RI) + P(Cl)P(C2)P(CR)[1 - P(CR)ll1 P(AC)] x

C[1 - P(AC)] + P(Cl)P(CR)[1 - P(C3)][1 - P(CR)II1 P(AC)]x

V

P(R1 ) + P(CR)[1 - P(C1)][1 - P(C3)ll1 - P(CR)]P(Ri) x

-pP(RT) + P(CR)P(CR)[1 - P(C1)][1 - P(C2)][1 - P(C3)] x
P(RI)P(RI) + P(Cl)P(CR)P(CR)[1 - P(C2)111 - P(C3)] x

[1 - P(AC)]P(RI) x { P(RI) + P(c2)[1 - P(AC)],"

11 P(C2)J

*Multiplying the terms out gives:

G1G2  =1-[1 - P(Cj) - P(RI) + P(Cl)P(RI) + P(CI)P(CR)-

*1 -GjG 2H P(Cl)P(C2)P(CR) - P(AC)P(Cl)P(CR) + P(AC)P(Cl)P(C2)P(CR)-

P(Cl)P(CR)P(RI) + P(Cl)P(C2)P(CR)P(R:) + P(AC)P(C1)P(CR)P(PR.)

P(AC)P(Cl)P(C2)P(CR)P(RI) + P(CR)P(RI) - P(Cl)P(CR)P(RI)-

P(C2)P(CR)P(RI) + P(Cl)P(C2)P(CR)P(RI) -

P(CR)P(RI)P(RI) + P(Cl)P(CR)P(RI)P(RI) + P(C2)P(CR)P(R9)P(R )

P(Cl)P(C2)P(CR)P(RI)P(RI) + P(Cl)P(C2)P(CR)P(CR)-

P(Cl)P(C2)P(C3)P(CR)P(CR) -P(AC)P(C1)P(C2)P(CR)P(CR) +

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR) - P(CI)P(C 2)P(CR)P(CR)P(RI) +

P(Cl)P(G2)P(C3)P(CR)P(CR)P(RI) + P(AC)P(Cj)P(C2)P(CR)P(CR)P(Ri)



LNw-plw- ~ .r . W%

4-77

P(c)( p(C pC (Rr ' ) R: P4,C2 )P(CR)P( CR)P(R: -

P (C-)P R)P C;,P R P C p(C p ) P (C R) P ( R 7

P(CI)P(C2-)P(C-.)P(CRIPR)P(R:) +P( C7)P(CR)P(C.P)P(C79?(R:)P

P(C,)P(C 2)P(CR)P( O CI )P: (R:) R) P( A ) C )P C ) C 92 C -

P(P(Cl)P(C 2)P(C.-)P(CR)(C) (A0)P( -P(C)P(C)P(C)P(pC:,-

P(A0 )P(Cl)P(C 2)P(C--)P(CR)P(R) +-( )(CPC.)~7pDPc

P(,AC)P(C)P(Ci)P(C2)P C)(:~ R)-

( CC)P(2 P.'))P(2)

P(AC)P(Cl)P(C2)P(CR)P(CR)P(R-)+

P(AC)P(C2)P(C3)P(CR)P(CR)P(R:)-

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(R:) +

P('IC2 PC.(C ) ( I) ( I

P(AC)P(Cl)P(C2)P(CR)P(CR)P(RI)P(RI)-

P(AC )P ( C3)P (CR) P(CR)P( R1 )P( RI)+

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI)P(RI) +

P(Cl)P(CR)P(CR)P(RT) - P(Cl)P(C3)P(CR)P(CR)P(RI)-

P(AC)P(CI)P(CR)P(CR)P(RI) + P(AC)P(Cl)P(C3)P(CR)P(CR)P(RI)-

P(Cl)P(CR)P(CR)P(RI)P(RI) + P(Cl)P(C3)P(CR)P(CR)P(RI)P(RI)

P(AC)P(Cl)P(CR)P(CR)P(RI)P(RI)-

P(AC)P(Cl)P(C3)P(CR)P(CR)P(RI)P(RI) +

Wl P(CR)P(CR)P(RI)P(RI) - P(Cl)P(CR)P(CR)P(RI)P(RI)-

P(C3)P(CR)P(CR)P(R:)P(RI) +P(Cl)P(C3)P(CR)P(CR)P(RI)P(R:)-

P(CR)P(CR)P(RI)P(R:)P(RI) +

P(Cl)P(CR)P(CR)P(RI)P(RI )P(RT)I + P(C3)P(CR)P(CR)P(RT)P(RI)P(RT)-

P(Cl)P(C3)P(CR)P(CR)P(RI )P(R1 )P(R:) - P(C1)P(C2)P(CR)P(CR)P(R:)

P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI) +P(AC)P(C1)P(C2)P(CR)P(CR)P(RI)-

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI) +

P(C1)P(C2)P(CR)P(CR)P(RI)P(RI)-

P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI)P(RI)-

P(AC)P(Cl)P(C2)P(CR)P(CR)P(RI)P(RI) +

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI)P(RT)-

P(C2)P(CR)P(CR)P(RI )P(R1) +P(C1 )P(C2)P(CR)P(CR)P(RI )P(RI )



av~ Pr

-% 4-78

P(C2,)P(Ci)P(CR)P'?: )P(R:)P (R1)

P(Cj)P(C2)P(CR)P(C:))P(R:)P(,Rr)P,.R:)-

PC)P(C 2)P(C3)P(CR)P(C )P(R)P(,R: P R-

P(C, )P(C2)P(C-')P(CR)P(CR)-

Pr) C1PA)P((C2)P(C3)P'CR) -'R

P(,C)(A)P(C!)C2)P(C3)P(CR)P(R

P(A4C)P(AC)P(Cl)P(C2)P(C 3)P(CR)P(CR)

P'P(AC)P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)

P(Cl)P(C3)P(CR)P(CR)P(RI) - P(AC)P(Cj)P(Cl1)P(CR)P(CR)P(RT)-

P(AC)P(Cl)P(C3)P(CR)P(CR)P(RI) +

P(AC)P(AC)P(Cl)P(C3 )P(CR)P(CR)P(RI)-

P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI) +

P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI) +

P(C.C5(C)(3PCRPC)(I

P(P(AC)P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI) +

P(P(AC PC)P(C2)P(C)P(CR)P(CR)P(RI) +

P(AC)P( 3 PC)RPR)P(AC)P(C2)P(C)P(CR)P(CR)P(RI)-
P(ClP(C2P(C)P(C)P(R)P(I)

P(AC)P)P(C2)P(C3)P(CR)P(R)P(RI) +

P(AC)P(AG)P(C2)P(C3)P(CR)P(GR)P(RI)-

PA)CP(Cl)P(C2)P(C3)P(CR)P(CR)P()

PA()P(C)P(C)P(CR)P( CR)P(RI) +

P(AC)P(C3)P(CR)P(CR)P(Cj)P(CpR) -,2PC)(Rp RPR)(J

P(P(AC)P(C)P(C)P(C)P(CR)P(R)P(R:)

P(Cl)P(C3)P(CR)P(CR)P(R:)P(RI) +

P(AC)P(Cl)P(C3)P(CR)P(CR)P(RI)P(R:)

2 P(Cl)P(C2)P(C3)P(CR)P(CR)P(RI)P(RI)-



4-79- -

Pt!C)P 'Ci) - PIC 1 )Pic;) - (c)(KPC)-

P(RPR)- P(Cl)P(R7) + P(CI)P(CR)P(R:) + P(Cl)PlC-)P(CR) --

P(C')P(C2)P(CR)P(CR) -P(AC)P(cl)P(C 2)P(CR)-

2(AC)p(CI)P(C2)P(CR" P(CPC-(2PC'(R

P(.'C)'(Cl)P(C2)P(CR)P(CR) - P(AC)P('C)P(Cli)P(C 2)P(CR)P(CR) +

P(Ci)P(CR)?(R:) - P(Cl)P(C3)P(CR)P(RI) - P(AC)P(Ci)P(CR)P(R:)

P(AC)P(Cl)P(C3 )P(CR)P(R:) - P(Cl)P(CR)P(CR)P(R7)

P(CI)P(C3)P(Cp)P(CR)P(R:) + P(AC)P(C1)P(C.:)P(CR)pi;:)

P(,"c)P Ci )P( C-)P(CR)P(C:))P(R:) +

P'IC)P(R)PR:)- P(Cl)P(C2)P(CR)P(RI)-

P ( C)P(C2)P(CR)P(R:) +P( AC )p( C I)P(C 2)P(CR)P(RI)-

P(,C2)P(CR)P(CR)P(RI) +P(Cl)P(C 2 )P(CR)P(CR)P(Rl)

P(AC)P(C2)P(CR)P(CR)P(R:) - P(AC)P(Cl)P(C2)P(CR)P(CR)P(R:) +

P(CR)P(RI)P(RI) -P(Cl)P(CR)P(RI)P(RI)-

P(C3)P(CR)P(RI)P(RI) + P(Cl)P(C 3)P(CR)P(RI)P(R:)-

P(CR)P(CR)P(RI)P(RI) + P(Cl)P(CR)P(CR)P(RI)P(RI) +

P(C3)P(CR)P(CR)P(RI)P(RI)~~~ - .jP(3PC)PC)(j)(j

P(CR)P(CR)P(CR)P(Rj)P(RI) - P(Cl)P(CR)P(CR)P(CR)P(RI,)P(RI)

PR)(RPRP(IPR)-P(C)P(CR)P(CR)P(R)P(R)P(R)

P(P(C2)P(CR)P(CR)P(RI)P(RI)P(RI)

P(P(C)P(CR)P(CR)P(R)P(RI)P(RI)

P(P(C3)P(CR)P(CR)P(RI)P(RI)P(RI) +

P(C2)P(C3)P(CR)P(CR)P(RI)P(RI)P(RI)+

P(P(C2)P(C3)P(CR)P(CR)P(RI)P(RI)P(RI) +

P(Cl)P(CR)P(CR)P(RI)P(Rj) -P(Cl)P(C 2)P(CR)P(CR)P(R:)P(Rj)-

P( C)C)P(CR)P(CR)P(RI)P(RI) +

P(AC)P(Cl)P(C2)P(CR)P(CR)P(R:)P(RI)-

P(Cl)P(C3)P(CR)P(CR)P(RI)P(RT) +

P(CI)P(C 2)P(C3)P(CR)P(CR)P(RI)P(RI)+

P(AC)P(Cl)P(C3)P(CR)P(CR)P(RI)P(RI)-

P (AC )P(C1 ) P( C2 p)P( CR)P( CR)P( RT)P( R1) +I

P(C2)P(CR)P(CR)P(RI)P(RI) - P(AC)P(C2)P(CR)P(CR)P(R!)P(Rj)

P(Cl)P(C2)P(CR)P(CR)P(Rj)P(Rj) +



P(AC)P(C-- )P(,C-)P(CRP(CR)?(R-)P(R-)-

PL'C- ,-P(C2)C)P(C;)PKCP()P(R:)-

GIG2P1(+P(CP (C2)P(R)P() + P(~C)P(CR)PC2 <2P ' 2I)

P(CP(CIP(C2)P(CP(CRPR ) + PC)(2PC)(RPR)(:

P(C)PAC)PC)PC3)CP(CR)P(R) +

2PAC)P(A P(CI)P(C2 )P(C3)P(CR)P(CR)P(RI

G1G =1 [ P(C)P(C)P(CR)P(R) (CP(CI)P(CR)P(R)P(R7)-

1 - G1G2H P(AC)P(C2)P(CR)P)P(RI) - P(C (C)P(CR)P( CR)P(R ) +

P(P(C)P(C)P(CR)P(R)P(RI ) + P(Cl(C)P(CR)P(C)P(RT )P(R

2 x )P(AC)P(AC))P(CRP(2 PC 3 )P( P(CR +

P(AC)P(C)P(C3)P(CR)P(CR)P(CR)P(RI) +

P(AC)P(C2)P(C3)P(CR)P(CR)P(R:)P(+I

P(AC)P(C)P(C2)P(C3)P(CR)P(CR)P(RI)P( - J



C -

-.., cT. iz S~m:ar ee--s,

aS .e e o r b I "c G w" t ', ' i -n a. . "e-r a
" -... r'- P'-C'- -x ' i- C ) - ) -

P r 
pI 

"- - 'C i - -~: - -rm .' m C, -- ': -" ''R = '

[- - x . -C)  C - 'jj'%. * - 2 , x

P(R '); and

c. The roebace, H, be a function of P(C ,n)

Although this was true for the special case with n = 1, the cases wt. n = 2

and n = 3 show that the two models are too distinct in their methocs to be

compared.

I¢
/" . . . . . . . . . . . - . . . . . .. - ' , _ ' " , - ,1, -;,. - ."--"--"-"---"- --.- :-/ -. :-- -" -"- :--: : :" " " ""' " ':"'"" -;"':" "-'



4-82

APPENDIX VI

ANALYSIS OF SCOTTS N-VERSION PROGRAMMING RELIABILITY MODEL
A,

:n s.. . " .. '-ve~sicn -acr mm n r l a ' -.: cc-', "7-e V;, - '_ :  ,

aTe :e=e: asa

PC.) :nthe Da'ii:' 0 ve-son ' exe::nc crre' , and

P' . : e Scot's '- ves'on roee n encnitec: i,

mode tnaT ype b re r = ptee . a e ror r tre vc nc ce:' s:or a rI

t nal' is describea by Scott woula look like:"

tn version s a

,he.es o - osi vesiDecsion U mo.

P ---- --------------

," U [ Versior, 1"

I Version 1 T

Figure 18. Basic N-Version Software

For tne roposea SOft.are -e ias - Tcce , 1t .s cesireo tadt

the individual reliability values for tne n versions be comninec to *cr"

ore re17atW:;i vdae (or trans:e- f.nct'or or tne Q T>, b'oo Od(O d

for this might be

-I%

%*



4-83

0 "

I Decision U
IN T
P --------- N. r Alcorithm

(Voter) u
(G2 ) T

Figure 19. Basic N-Version Software Equivalent

w4-7 an overall trans-e- fnc:icn of R Gi x G2 .

A si4loe case to examine is the N-version sciF:.are composec of
t:ree inceze.cen: versions. ine 'rooa:i i y of a sys:em er'or in tnis 2-versicr

so:Na-e syszem becomes the probability of at least two versions executing

i4rorrectly. This simle case is comouted with Scott's N-version programming

re 'aoi'i:y model as

R = I - [Type 1 Error + Type 2 Error + Type 3 Error].

in Scott's analysis, he assumes that the probability of a Type 3 Error is

zero. Therefore, with Scott's model,

R I 1 - ({ [P(1 1)P(12)P(13)] + [P(Cl)P(1 2)P(13 ) +

P(II)P(C 2 )P(13) + P(Il)P(1 2 )P(C3)] + 01.

By substitution,

GIG 2  = I -{[I - P(CI)][I - P(C2 )]1 - P(C3 )] +
P(CI)[I - P(C2 )][1 - P(C3)] +

[1 - P(C1]P(C 2 )FI - P(C3)]

[1 - P(CI)][I - P(C2 )]P(C 3 )1
.

Multiplying out the factors gives

GIG 2  I - l[l - P(CI) - P(C2 ) + P(CI)P(C 2 )][I - P(C3)]
P(CI)[I - P(C2 ) - P(C3 ) + P(C2 )P(03)]  +

P(C2 )[l - P(CI) - P(C2) + P(CI)P(C3 )] +

P(C3 Y1 - P(C1) - P(C2) + K



141n rn- P(C') P(C)PCon,

=" GG 1 - [D - -(1 P"C 2 ) P(IP -

P(IC')P',C3) + P(C2)P(C-z) -P(Cj)P'(C 2 1P/C-,;
PIC)- P( C1)P(C2) - P1(C--)P(C 3)

P(C2)P(C1) + P(Cl.,-)P(C) + P (-

ICance'lina alike te-r-s adyes

= 1[1- P(C1 )P(C2) -P(Cl)P(C-1) -P(C 2)p(C3) +

This can be red ucec to

-G 1G2  P(C1)P(C2) + P(C1)P(C3) + P(C2)P(C3) -2P(C 1 )P(C2)P(C3),

With Scott's assumption that the probability of a Type 3 Error is zero, the
equivalent assumption in the software reliability model would be that

G2 1. Therefore,

GI P(Cl)P(C2) + P(CI)P(C3) + P(C2)P(C3) -2P(CI)P(C 2)P(C,-).

rI



£- 1

TECHNICAL REPORT

on

SOFTWARE RELIABILITY DATA AND DATABASE .

1.0 INTRODUCTION "

p

T.e s: -wa e re. alii:vy ca:a reu rec bY t.e so-:.'a e re .a:

..c. was ces:-4:ec in t:e :revicus s nc. or.r secci c iebzr"es te

cata to be collec-et by avionics systems developers prior to starti nq develop-

ment of tne software packaces, durina tne ceveloDmenz, of t*e software packages,

and during the operational life of the software. In addition, attributes

of the data base program are described.

2.0 BACKGROUND

As noted in the previous section of this report, the software reli-

ability model's primary inputs are probabilities. While this is an excellent

form for the model, it is not the normal type of data collected by avionics
J.p*

systems developers. The data collected by developers of avioncs systems

tends to be deterministic as opposed to statistical. The statistical and

probabilistic values are derived from the determinstic data as discussed

in earlier sections of this report. The method used by Battelle to derive -'

these data ties in closely with the database program.

Although any database manager can store and retrieve information,

spreadsheet programs provide more caoability than a simple file manager.

The spreaasneet programs with their built in functions provide the capability

to analyze the data insteac of simply storing and retrieving data. There

are a large number of spreadsheet programs to choose from and the selection

of a specific program is not within the scope of this work. This section

does discuss factors which should be considered in the selection of a spread-

sheet program.

.A-



5-2

3.0 DATABASE PROGRAM AND SOFTWARE RELIABILITY DATA

The data to be collected by the avionics system cevelooe- is cciiectez

at different times curing the software life cycle. It is lKel/ to be orzanizec

in any database procram as an assortmen: of aifferen: files. In orcer to

maniculate these cata contained in oifie-ent files into the form recuirec

by tne software reliability model, a relazional database manage, whicn can

1l4nk se:arate data files to create a cataoase containinc information se7ectec

from tre different files is recommended.

Princioles of data desicn should be ao-iie: wren cevelopinc the
database. Data cosizn is a set of principles anc analytic tools that brings

to the cesign of data tne same kind of organization tnat structurec proorams

brings to programs. To avoid dangercus file designs, a clear understanding

of the dependencies in the files is necessary. Transitive depencencies are

a frequent cause of structural problems in the design of files.

Once the database is created, use of a spreadsheet with its built-in

arithmetic and statistical functions will provide the capability to analyze

deterministic data such as lines of source code, memory usage, errors detected,

errors corrected, and linkages and assemble these data into the statistical

form required for determining the probabilistic inputs required by the software

reliability model.

The inputs required for the database program will depend upon the

software reliability model (reference Section 2, "Technical Report on Review

of Previous Studies of Software Reliability Models" for some examples) used

to obtain the probabilistic reliability value that is required in the software

reliability model described in Section 4, "Technical Report on Formulation

of the Software Reliability Model". Table 1 lists some of the software reliabilily

models and their required inputs. The built-in arithmetic and statistical

functions will manipulate this input data to obtain the probabilistic roli-

ability values. An example of what the input and output for the database

program might look like is given in Tables 2 and 3.

p r%

, °ii
% ' ' - " " " 

°
"" " -% " "" '' """ "" * "" % ".J~---**-~* . . . . . .. . -. . . ..' " . % -".* . * ii, w -%



p

5-3

Table 1. Input Data Used by Various Software Reliability Models

Software
Reliability Model input Data

Generalized Imperfect N = the total number of errors;
Debuccinc Model p = the probability of perfect

programmer debugging behavior

Buc--coor:ional Mocel E r(:) the number of remaining
bugs

Geometric Poisson Model A = the average number of faults
occurring in the first
interval;

ti = the i-th debugging interval

Schneidewind Non-Homogeneous mi : the estimated number of
Poisson Model errors in interval i

Jelinski-Moranda N = the number of initial errors
De-Eutrophication Model in the program;

Xi = the length of the i-th
debugging interval;

n = the number of errors found
to date

Extended Jelinski-Moranda N = the total number of initial
Model errors;

ni = the cumulative number of
errors found through the
i-th interval;

ti: the i-th debugging interval

Geometric De-Eutrophication D the initial errcr detection
Model rate;

n = the total number of errors
discovered;

Xi the i-th debugging interval

Lines of Source Code Model n = the total number of lines of
source code; the programming
language (i.e., FORTRAN,
Cobol, Ada, etc.)

"I--



,.
5-4.

Cumulative Cumui;- 'e

Errors Time Errors Cumulative Er rurs
Detected Interval Removed Time Det:ec:ec

2 7 0 7 2

a 21 1 28

0 8 4 36 6

0 2 5 38 6

3 3 6 41 9

2 4 8 45 11

11 6 12 51 22

3 1 13 52 25

0 2 23 54 25

1 1 24 55 26

1 3 26 58 27

1 2 27 60 28

1 2 28 62 29

0 3 29 65 29

1 6 30 71 30

1 23 31 94 31

2 4 32 98 33

1 9 34 107 34

Table 2. Possible Input to the Database Program [ANGUS]

1 ,
I ."."-"-"-"."""."."""-".".""' . . . " """""" . " . . . ,.. '""'''% .w.. ... .. 

"
. ' . . .. ' . ' .. 2 '''



5-5

Es: imate Observec Eszimatec
Mocel Errors

Geometric Poisson 75 34 0.0056

Non-Homoceneous 75 34 0.0056
Poi sson

Geometric Poisson 16 15 0.!586

Non-Homoceneous 16 15 0.1727
Poisson

I __ __

Geometric Poisson 49 20 0.0343

Non-Homogeneous 49 20 0.0349
Poisson

Generalized Poisson 21 20 0.1338

Generalized Poisson 28 23 0.2072

IBM Poisson (Modified) 37 23 0.0082

Geometric Poisson 155 73 0.0204

Non-Homogeneous 155 73 0.0206
Poisson

a.-i

Table 3. Possible Input and Output for the
Database Program [ANGUS]

-'a
4.b

.4

.- r1



,%.

5-6

4.0 REFERENCES

[ANGUS] Angus, J.E., Bowen, J.B., and VanDenBe-g, SJ,, Reliabiliy/ Mcce'
Demonstration Study, Huces Aircraft Comiany, RACC-TR-8-_C7,
Volume i, August 1982, pp. 4-2 and 4-26 through '1-31.

[WE7SS] Weiss, David M., "A Comparison of Errors in Different Softoare-
Development Environments", Naval Researc-i L-ooratory, Wasmincton,
D.C., Report Number AD-A1!8-296, 14 July 1982.

%

%

%

J %- e e

*0 :.

S'"'

ill .'S.>>

-. Ow. 0~ ~. . . . . . . .- - ...1-.-



.4

ATF ;4

a. 6.

Apt tL


